
MySQL Installation Guide

MySQL Installation Guide
Abstract

This is the MySQL Installation Guide from the MySQL 6.0 Reference Manual.

Document generated on: 2009-06-02 (revision: 15165)

Copyright © 1997-2008 MySQL AB, 2009 Sun Microsystems, Inc. All rights reserved. U.S. Government Rights - Commercial software. Govern-
ment users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supplements. Use is
subject to license terms. Sun, Sun Microsystems, the Sun logo, Java, Solaris, StarOffice, MySQL Enterprise Monitor 2.0, MySQL logo and
MySQL are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. UNIX is a registered trademark in the
U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Copyright © 1997-2008 MySQL AB, 2009 Sun Microsystems, Inc. Tous droits réservés. L'utilisation est soumise aux termes du contrat de li-
cence.Sun, Sun Microsystems, le logo Sun, Java, Solaris, StarOffice, MySQL Enterprise Monitor 2.0, MySQL logo et MySQL sont des
marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the following terms: You may create a printed
copy of this documentation solely for your own personal use. Conversion to other formats is allowed as long as the actual content is not altered or
edited in any way. You shall not publish or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Sun disseminates it (that is, electronically for download on a Web site with the software) or on a CD-ROM or similar me-
dium, provided however that the documentation is disseminated together with the software on the same medium. Any other use, such as any dis-
semination of printed copies or use of this documentation, in whole or in part, in another publication, requires the prior written consent from an au-
thorized representative of Sun Microsystems, Inc. Sun Microsystems, Inc. and MySQL AB reserve any and all rights to this documentation not ex-
pressly granted above.

For more information on the terms of this license, for details on how the MySQL documentation is built and produced, or if you are interested in
doing a translation, please contact the Documentation Team.

For additional licensing information, including licenses for libraries used by MySQL, see Preface, Notes, Licenses.

If you want help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you can discuss your issues with other
MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other languages, and downloadable versions in
variety of formats, including HTML, CHM, and PDF formats, see MySQL Documentation Library.

http://www.mysql.com/company/contact/
http://dev.mysql.com/doc/refman/6.0/en/preface.html
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc

Installing and Upgrading MySQL
This chapter describes how to obtain and install MySQL. A summary of the procedure follows and later sections provide the de-
tails. If you plan to upgrade an existing version of MySQL to a newer version rather than install MySQL for the first time, see Sec-
tion 12.1, “Upgrading MySQL”, for information about upgrade procedures and about issues that you should consider before up-
grading.

If you are interested in migrating to MySQL from another database system, you may wish to read MySQL 5.1 FAQ — Migration,
which contains answers to some common questions concerning migration issues.

1. Determine whether MySQL runs and is supported on your platform. Please note that not all platforms are equally suitable
for running MySQL, and that not all platforms on which MySQL is known to run are officially supported by Sun Microsys-
tems, Inc.:

• For MySQL Enterprise Server, the officially supported platforms are listed at ht-
tp://www.mysql.com/support/supportedplatforms.html.

• MySQL Community Server runs on the platforms listed at Section 1.1, “Operating Systems Supported by MySQL Com-
munity Server”.

2. Choose which distribution to install. Several versions of MySQL are available, and most are available in several distribution
formats. You can choose from pre-packaged distributions containing binary (precompiled) programs or source code. When in
doubt, use a binary distribution. We also provide public access to our current source tree for those who want to see our most
recent developments and help us test new code. To determine which version and type of distribution you should use, see Sec-
tion 1.2, “Choosing Which MySQL Distribution to Install”.

3. Download the distribution that you want to install. For instructions, see Section 1.3, “How to Get MySQL”. To verify the
integrity of the distribution, use the instructions in Section 1.4, “Verifying Package Integrity Using MD5 Checksums or
GnuPG”.

4. Install the distribution. To install MySQL from a binary distribution, use the instructions in Chapter 2, Standard MySQL In-
stallation Using a Binary Distribution. To install MySQL from a source distribution or from the current development source
tree, use the instructions in Chapter 10, MySQL Installation Using a Source Distribution.

If you encounter installation difficulties, see Chapter 13, Operating System-Specific Notes, for information on solving prob-
lems for particular platforms.

5. Perform any necessary post-installation setup. After installing MySQL, read Chapter 11, Post-Installation Setup and Test-
ing. This section contains important information about making sure the MySQL server is working properly. It also describes
how to secure the initial MySQL user accounts, which have no passwords until you assign passwords. The section applies
whether you install MySQL using a binary or source distribution.

6. If you want to run the MySQL benchmark scripts, Perl support for MySQL must be available. See Chapter 15, Perl Installa-
tion Notes.

iv

http://dev.mysql.com/doc/refman/6.0/en/faqs-migration.html
http://www.mysql.com/support/supportedplatforms.html
http://www.mysql.com/support/supportedplatforms.html

Chapter 1. General Installation Issues
The MySQL installation procedure depends on whether you will install MySQL Enterprise Server or MySQL Community Server.
The set of applicable platforms depends on which distribution you will install:

• For MySQL Enterprise Server, the officially supported platforms are listed at ht-
tp://www.mysql.com/support/supportedplatforms.html.

• MySQL Community Server runs on the platforms listed at Section 1.1, “Operating Systems Supported by MySQL Community
Server”.

For MySQL Enterprise Server, install the main distribution plus any service packs or hotfixes that you wish to apply using the En-
terprise Installer. For platforms that do not yet have an Enterprise Installer, use the Community Server instructions.

For MySQL Community Server, install the main distribution plus any hotfixes and updates:

• Download a binary release, or download a source release and build MySQL yourself from the source code.

• Retrieve MySQL from the Bazaar tree and build it from source. The Bazaar tree contains the latest developer code.

The immediately following sections contain the information necessary to choose, download, and verify your distribution. The in-
structions in later sections of the chapter describe how to install the distribution that you choose. For binary distributions, see the
instructions at Chapter 2, Standard MySQL Installation Using a Binary Distribution. To build MySQL from source, use the instruc-
tions at Chapter 10, MySQL Installation Using a Source Distribution.

1.1. Operating Systems Supported by MySQL Community Server
This section lists the operating systems on which MySQL Community Server is known to run.

Important

Sun Microsystems, Inc. does not necessarily provide official support for all the platforms listed in this section. For in-
formation about those platforms that are officially supported, see MySQL Server Supported Platforms on the MySQL
Web site.

We use GNU Autoconf, so it is possible to port MySQL to all modern systems that have a C++ compiler and a working implement-
ation of POSIX threads. (Thread support is needed for the server. To compile only the client code, the only requirement is a C++
compiler.)

MySQL has been reported to compile successfully on the following combinations of operating system and thread package.

• AIX 4.x, 5.x with native threads. See Section 13.5.3, “IBM-AIX notes”.

• Amiga.

• FreeBSD 5.x and up with native threads.

• HP-UX 11.x with the native threads. See Section 13.5.2, “HP-UX Version 11.x Notes”.

• Linux, builds on all fairly recent Linux distributions with glibc 2.3. See Section 13.1, “Linux Notes”.

• Mac OS X. See Section 13.2, “Mac OS X Notes”.

• NetBSD 1.3/1.4 Intel and NetBSD 1.3 Alpha. See Section 13.4.2, “NetBSD Notes”.

• Novell NetWare 6.0 and 6.5. See Chapter 8, Installing MySQL on NetWare.

• OpenBSD 2.5 and with native threads. OpenBSD earlier than 2.5 with the MIT-pthreads package. See Section 13.4.3,
“OpenBSD 2.5 Notes”.

• SCO OpenServer 5.0.X with a recent port of the FSU Pthreads package. See Section 13.5.8, “SCO UNIX and OpenServer 5.0.x
Notes”.

• SCO Openserver 6.0.x. See Section 13.5.9, “SCO OpenServer 6.0.x Notes”.

1

http://www.mysql.com/support/supportedplatforms.html
http://www.mysql.com/support/supportedplatforms.html
http://www.mysql.com/support/supportedplatforms.html

• SCO UnixWare 7.1.x. See Section 13.5.10, “SCO UnixWare 7.1.x and OpenUNIX 8.0.0 Notes”.

• SGI Irix 6.x with native threads. See Section 13.5.7, “SGI Irix Notes”.

• Solaris 2.5 and above with native threads on SPARC and x86. See Section 13.3, “Solaris Notes”.

• Tru64 Unix. See Section 13.5.5, “Alpha-DEC-UNIX Notes (Tru64)”.

• Windows 2000, Windows XP, Windows Vista, Windows Server 2003, and Windows Server 2008. See Chapter 3, Installing
MySQL on Windows.

MySQL has also been known to run on other systems in the past. See Chapter 13, Operating System-Specific Notes. Some porting
effort might be required for current versions of MySQL on these systems.

Not all platforms are equally well-suited for running MySQL. How well a certain platform is suited for a high-load mission-critical
MySQL server is determined by the following factors:

• General stability of the thread library. A platform may have an excellent reputation otherwise, but MySQL is only as stable as
the thread library it calls, even if everything else is perfect.

• The capability of the kernel and the thread library to take advantage of symmetric multi-processor (SMP) systems. In other
words, when a process creates a thread, it should be possible for that thread to run on a CPU different from the original process.

• The capability of the kernel and the thread library to run many threads that acquire and release a mutex over a short critical re-
gion frequently without excessive context switches. If the implementation of pthread_mutex_lock() is too anxious to
yield CPU time, this hurts MySQL tremendously. If this issue is not taken care of, adding extra CPUs actually makes MySQL
slower.

• General file system stability and performance.

• If your tables are large, performance is affected by the ability of the file system to deal with large files at all and to deal with
them efficiently.

• Our level of expertise here at Sun Microsystems, Inc. with the platform. If we know a platform well, we enable platform-specif-
ic optimizations and fixes at compile time. We can also provide advice on configuring your system optimally for MySQL.

• The amount of testing we have done internally for similar configurations.

• The number of users that have run MySQL successfully on the platform in similar configurations. If this number is high, the
likelihood of encountering platform-specific surprises is much smaller.

1.2. Choosing Which MySQL Distribution to Install
When preparing to install MySQL, you should decide which version to use. MySQL development occurs in several release series,
and you can pick the one that best fits your needs. After deciding which version to install, you can choose a distribution format. Re-
leases are available in binary or source format.

1.2.1. Choosing Which Version of MySQL to Install
The first decision to make is whether you want to use a production (stable) release or a development release. In the MySQL devel-
opment process, multiple release series co-exist, each at a different stage of maturity:

• MySQL 5.4 and 6.0 are the current development release series.

• MySQL 5.1 is the current General Availability (Production) release series. New releases are issued for bugfixes only; no new
features are being added that could affect stability.

• MySQL 5.0 is the previous stable (production-quality) release series.

• MySQL 4.1, 4.0, and 3.23 are old stable (production-quality) release series. MySQL 4.1 is now at the end of the product life-
cycle. Active development and support for these versions has ended.

Extended support for MySQL 4.1 remains available. According to the MySQL Lifecycle Policy, only Security and Severity
Level 1 issues are still being fixed for MySQL 4.1.

General Installation Issues

2

http://www.mysql.com/company/legal/lifecycle/#policy

We do not believe in a complete code freeze because this prevents us from making bugfixes and other fixes that must be done. By
“somewhat frozen” we mean that we may add small things that should not affect anything that currently works in a production re-
lease. Naturally, relevant bugfixes from an earlier series propagate to later series.

Normally, if you are beginning to use MySQL for the first time or trying to port it to some system for which there is no binary dis-
tribution, we recommend going with the General Availability release series. Currently, this is MySQL 5.1. All MySQL releases,
even those from development series, are checked with the MySQL benchmarks and an extensive test suite before being issued.

If you are running an older system and want to upgrade, but do not want to take the chance of having a non-seamless upgrade, you
should upgrade to the latest version in the same release series you are using (where only the last part of the version number is new-
er than yours). We have tried to fix only fatal bugs and make only small, relatively “safe” changes to that version.

If you want to use new features not present in the production release series, you can use a version from a development series. Note
that development releases are not as stable as production releases.

If you want to use the very latest sources containing all current patches and bugfixes, you can use one of our Bazaar repositories.
These are not “releases” as such, but are available as previews of the code on which future releases are to be based.

The MySQL naming scheme uses release names that consist of three numbers and a suffix; for example, mysql-5.0.12-beta. The
numbers within the release name are interpreted as follows:

• The first number (5) is the major version and describes the file format. All MySQL 5 releases have the same file format.

• The second number (0) is the release level. Taken together, the major version and release level constitute the release series
number.

• The third number (12) is the version number within the release series. This is incremented for each new release. Usually you
want the latest version for the series you have chosen.

For each minor update, the last number in the version string is incremented. When there are major new features or minor incompat-
ibilities with previous versions, the second number in the version string is incremented. When the file format changes, the first
number is increased.

Release names also include a suffix to indicates the stability level of the release. Releases within a series progress through a set of
suffixes to indicate how the stability level improves. The possible suffixes are:

• alpha indicates that the release is for preview purposes only. Known bugs should be documented in the News section (see
MySQL Change History). Most alpha releases implement new commands and extensions. Active development that may involve
major code changes can occur in an alpha release. However, we do conduct testing before issuing a release.

• beta indicates that the release is appropriate for use with new development. Within beta releases, the features and compatibility
should remain consistent. However, beta releases may contain numerous and major unaddressed bugs.

All APIs, externally visible structures, and columns for SQL statements will not change during future beta, release candidate, or
production releases.

• rc indicates a Release Candidate. Release candidates are believed to be stable, having passed all of MySQL's internal testing,
and with all known fatal runtime bugs fixed. However, the release has not been in widespread use long enough to know for sure
that all bugs have been identified. Only minor fixes are added. (A release candidate is what formerly was known as a gamma
release.)

• If there is no suffix, it indicates that the release is a General Availability (GA) or Production release. GA releases are stable,
having successfully passed through all earlier release stages and are believed to be reliable, free of serious bugs, and suitable for
use in production systems. Only critical bugfixes are applied to the release.

MySQL uses a naming scheme that is slightly different from most other products. In general, it is usually safe to use any version
that has been out for a couple of weeks without being replaced by a new version within the same release series.

All releases of MySQL are run through our standard tests and benchmarks to ensure that they are relatively safe to use. Because the
standard tests are extended over time to check for all previously found bugs, the test suite keeps getting better.

All releases have been tested at least with these tools:

• An internal test suite

The mysql-test directory contains an extensive set of test cases. We run these tests for every server binary. See MySQL

General Installation Issues

3

http://dev.mysql.com/doc/refman/6.0/en/news.html

Test Suite, for more information about this test suite.

• The MySQL benchmark suite

This suite runs a range of common queries. It is also a test to determine whether the latest batch of optimizations actually made
the code faster. See The MySQL Benchmark Suite.

• The crash-me test

This test tries to determine what features the database supports and what its capabilities and limitations are. See The MySQL
Benchmark Suite.

We also test the newest MySQL version in our internal production environment, on at least one machine. We have more than
100GB of data to work with.

1.2.2. Choosing a Distribution Format
After choosing which version of MySQL to install, you should decide whether to use a binary distribution or a source distribution.
In most cases, you should probably use a binary distribution, if one exists for your platform. Binary distributions are available in
native format for many platforms, such as RPM files for Linux or PKG package installers for Mac OS X or Solaris. Distributions
also are available as Zip archives or compressed tar files.

Reasons to choose a binary distribution include the following:

• Binary distributions generally are easier to install than source distributions.

• To satisfy different user requirements, we provide several servers in binary distributions. mysqld is an optimized server that is
a smaller, faster binary. mysqld-debug is compiled with debugging support.

Each of these servers is compiled from the same source distribution, though with different configuration options. All native
MySQL clients can connect to servers from either MySQL version.

Under some circumstances, you may be better off installing MySQL from a source distribution:

• You want to install MySQL at some explicit location. The standard binary distributions are ready to run at any installation loca-
tion, but you might require even more flexibility to place MySQL components where you want.

• You want to configure mysqld to ensure that features are available that might not be included in the standard binary distribu-
tions. Here is a list of the most common extra options that you may want to use to ensure feature availability:

• --with-libwrap

• --with-named-z-libs (this is done for some of the binaries)

• --with-debug[=full]

• You want to configure mysqld without some features that are included in the standard binary distributions. For example, dis-
tributions normally are compiled with support for all character sets. If you want a smaller MySQL server, you can recompile it
with support for only the character sets you need.

• You have a special compiler (such as pgcc) or want to use compiler options that are better optimized for your processor. Bin-
ary distributions are compiled with options that should work on a variety of processors from the same processor family.

• You want to use the latest sources from one of the Bazaar repositories to have access to all current bugfixes. For example, if
you have found a bug and reported it to the MySQL development team, the bugfix is committed to the source repository and
you can access it there. The bugfix does not appear in a release until a release actually is issued.

• You want to read (or modify) the C and C++ code that makes up MySQL. For this purpose, you should get a source distribu-
tion, because the source code is always the ultimate manual.

• Source distributions contain more tests and examples than binary distributions.

1.2.3. How and When Updates Are Released
MySQL is evolving quite rapidly and we want to share new developments with other MySQL users. We try to produce a new re-

General Installation Issues

4

http://dev.mysql.com/doc/refman/6.0/en/mysql-test-suite.html
http://dev.mysql.com/doc/refman/6.0/en/mysql-benchmarks.html
http://dev.mysql.com/doc/refman/6.0/en/mysql-benchmarks.html
http://dev.mysql.com/doc/refman/6.0/en/mysql-benchmarks.html

lease whenever we have new and useful features that others also seem to have a need for.

We also try to help users who request features that are easy to implement. We take note of what our licensed users want, and we es-
pecially take note of what our support customers want and try to help them in this regard.

No one is required to download a new release. The News section helps you determine whether the new release has something you
really want. See MySQL Change History.

We use the following policy when updating MySQL:

• Enterprise Server releases are meant to appear every 18 months, supplemented by quarterly service packs and monthly rapid
updates. Community Server releases are meant to appear 2–3 times per year.

• Releases are issued within each series. Enterprise Server releases are numbered using even numbers (for example, 6.0.20).
Community Server releases are numbered using odd numbers (for example, 6.0.21).

• Binary distributions for some platforms are made by us for major releases. Other people may make binary distributions for oth-
er systems, but probably less frequently.

• We make fixes available as soon as we have identified and corrected small or non-critical but annoying bugs. The fixes are
available in source form immediately from our public Bazaar repositories, and are included in the next release.

• If by any chance a security vulnerability or critical bug is found in a release, our policy is to fix it in a new release as soon as
possible. (We would like other companies to do this, too!)

1.2.4. MySQL Binaries Compiled by Sun Microsystems, Inc.
As a service of Sun Microsystems, Inc., we provide a set of binary distributions of MySQL that are compiled on systems at our site
or on systems where supporters of MySQL kindly have given us access to their machines.

In addition to the binaries provided in platform-specific package formats, we offer binary distributions for a number of platforms in
the form of compressed tar files (.tar.gz files). See Chapter 2, Standard MySQL Installation Using a Binary Distribution.

The RPM distributions for MySQL 6.0 releases that we make available through our Web site are generated by MySQL AB.

For Windows distributions, see Chapter 3, Installing MySQL on Windows.

These distributions are generated using the script Build-tools/Do-compile, which compiles the source code and creates the
binary tar.gz archive using scripts/make_binary_distribution.

These binaries are configured and built with the following compilers and options. This information can also be obtained by looking
at the variables COMP_ENV_INFO and CONFIGURE_LINE inside the script bin/mysqlbug of every binary tar file distribu-
tion.

Anyone who has more optimal options for any of the following configure commands can mail them to the MySQL intern-
als mailing list. See MySQL Mailing Lists.

If you want to compile a debug version of MySQL, you should add --with-debug or --with-debug=full to the following
configure commands and remove any -fomit-frame-pointer options.

The following binaries are built on our own development systems:

• Linux 2.4.xx x86 with gcc 2.95.3:

CFLAGS="-O2 -mcpu=pentiumpro" CXX=gcc CXXFLAGS="-O2 -mcpu=pentiumpro
-felide-constructors" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --enable-assembler --disable-shared
--with-client-ldflags=-all-static --with-mysqld-ldflags=-all-static

• Linux 2.4.x x86 with icc (Intel C++ Compiler 8.1 or later releases):

CC=icc CXX=icpc CFLAGS="-O3 -unroll2 -ip -mp -no-gcc -restrict"
CXXFLAGS="-O3 -unroll2 -ip -mp -no-gcc -restrict" ./configure
--prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --enable-assembler
--disable-shared --with-client-ldflags=-all-static
--with-mysqld-ldflags=-all-static --with-embedded-server --with-innodb

General Installation Issues

5

http://dev.mysql.com/doc/refman/6.0/en/news.html
http://dev.mysql.com/doc/refman/5.1/en/mailing-lists.html

Note that versions 8.1 and newer of the Intel compiler have separate drivers for 'pure' C (icc) and C++ (icpc); if you use
icc version 8.0 or older for building MySQL, you will need to set CXX=icc.

• Linux 2.4.xx Intel Itanium 2 with ecc (Intel C++ Itanium Compiler 7.0):

CC=ecc CFLAGS="-O2 -tpp2 -ip -nolib_inline" CXX=ecc CXXFLAGS="-O2
-tpp2 -ip -nolib_inline" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile

• Linux 2.4.xx Intel Itanium with ecc (Intel C++ Itanium Compiler 7.0):

CC=ecc CFLAGS=-tpp1 CXX=ecc CXXFLAGS=-tpp1 ./configure
--prefix=/usr/local/mysql --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile

• Linux 2.4.xx alpha with ccc (Compaq C V6.2-505 / Compaq C++ V6.3-006):

CC=ccc CFLAGS="-fast -arch generic" CXX=cxx CXXFLAGS="-fast -arch
generic -noexceptions -nortti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --with-mysqld-ldflags=-non_shared
--with-client-ldflags=-non_shared --disable-shared

• Linux 2.x.xx ppc with gcc 2.95.4:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--localstatedir=/usr/local/mysql/data --libexecdir=/usr/local/mysql/bin
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --disable-shared --with-embedded-server
--with-innodb

• Linux 2.4.xx s390 with gcc 2.95.3:

CFLAGS="-O2" CXX=gcc CXXFLAGS="-O2 -felide-constructors" ./configure
--prefix=/usr/local/mysql --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --disable-shared
--with-client-ldflags=-all-static --with-mysqld-ldflags=-all-static

• Linux 2.4.xx x86_64 (AMD64) with gcc 3.2.1:

CXX=gcc ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --disable-shared

• Sun Solaris 8 x86 with gcc 3.2.3:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--localstatedir=/usr/local/mysql/data --libexecdir=/usr/local/mysql/bin
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --disable-shared --with-innodb

• Sun Solaris 8 SPARC with gcc 3.2:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --enable-assembler --with-named-z-libs=no
--with-named-curses-libs=-lcurses --disable-shared

• Sun Solaris 8 SPARC 64-bit with gcc 3.2:

CC=gcc CFLAGS="-O3 -m64 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-m64 -fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --with-named-z-libs=no
--with-named-curses-libs=-lcurses --disable-shared

• Sun Solaris 9 SPARC with gcc 2.95.3:

General Installation Issues

6

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --enable-assembler --with-named-curses-libs=-lcurses
--disable-shared

• Sun Solaris 9 SPARC with cc-5.0 (Sun Forte 5.0):

CC=cc-5.0 CXX=CC ASFLAGS="-xarch=v9" CFLAGS="-Xa -xstrconst -mt
-D_FORTEC_ -xarch=v9" CXXFLAGS="-noex -mt -D_FORTEC_ -xarch=v9"
./configure --prefix=/usr/local/mysql --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --enable-assembler
--with-named-z-libs=no --enable-thread-safe-client --disable-shared

• IBM AIX 4.3.2 ppc with gcc 3.2.3:

CFLAGS="-O2 -mcpu=powerpc -Wa,-many " CXX=gcc CXXFLAGS="-O2
-mcpu=powerpc -Wa,-many -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --with-named-z-libs=no --disable-shared

• IBM AIX 4.3.3 ppc with xlC_r (IBM Visual Age C/C++ 6.0):

CC=xlc_r CFLAGS="-ma -O2 -qstrict -qoptimize=2 -qmaxmem=8192"
CXX=xlC_r CXXFLAGS ="-ma -O2 -qstrict -qoptimize=2 -qmaxmem=8192"
./configure --prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --with-named-z-libs=no
--disable-shared --with-innodb

• IBM AIX 5.1.0 ppc with gcc 3.3:

CFLAGS="-O2 -mcpu=powerpc -Wa,-many" CXX=gcc CXXFLAGS="-O2 -mcpu=powerpc
-Wa,-many -felide-constructors -fno-exceptions -fno-rtti" ./configure
--prefix=/usr/local/mysql --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --with-named-z-libs=no
--disable-shared

• IBM AIX 5.2.0 ppc with xlC_r (IBM Visual Age C/C++ 6.0):

CC=xlc_r CFLAGS="-ma -O2 -qstrict -qoptimize=2 -qmaxmem=8192"
CXX=xlC_r CXXFLAGS="-ma -O2 -qstrict -qoptimize=2 -qmaxmem=8192"
./configure --prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --with-named-z-libs=no
--disable-shared --with-embedded-server --with-innodb

• HP-UX 10.20 pa-risc1.1 with gcc 3.1:

CFLAGS="-DHPUX -I/opt/dce/include -O3 -fPIC" CXX=gcc CXXFLAGS="-DHPUX
-I/opt/dce /include -felide-constructors -fno-exceptions -fno-rtti
-O3 -fPIC" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --with-pthread --with-named-thread-libs=-ldce
--with-lib-ccflags=-fPIC --disable-shared

• HP-UX 11.00 pa-risc with aCC (HP ANSI C++ B3910B A.03.50):

CC=cc CXX=aCC CFLAGS=+DAportable CXXFLAGS=+DAportable ./configure
--prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --disable-shared
--with-embedded-server --with-innodb

• HP-UX 11.11 pa-risc2.0 64bit with aCC (HP ANSI C++ B3910B A.03.33):

CC=cc CXX=aCC CFLAGS=+DD64 CXXFLAGS=+DD64 ./configure
--prefix=/usr/local/mysql --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --disable-shared

• HP-UX 11.11 pa-risc2.0 32bit with aCC (HP ANSI C++ B3910B A.03.33):

CC=cc CXX=aCC CFLAGS="+DAportable" CXXFLAGS="+DAportable" ./configure
--prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --disable-shared

General Installation Issues

7

--with-innodb

• HP-UX 11.22 ia64 64bit with aCC (HP aC++/ANSI C B3910B A.05.50):

CC=cc CXX=aCC CFLAGS="+DD64 +DSitanium2" CXXFLAGS="+DD64 +DSitanium2"
./configure --prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --disable-shared
--with-embedded-server --with-innodb

• Apple Mac OS X 10.2 powerpc with gcc 3.1:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --disable-shared

• FreeBSD 4.7 i386 with gcc 2.95.4:

CFLAGS=-DHAVE_BROKEN_REALPATH ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --enable-assembler --with-named-z-libs=not-used
--disable-shared

• FreeBSD 4.7 i386 using LinuxThreads with gcc 2.95.4:

CFLAGS="-DHAVE_BROKEN_REALPATH -D__USE_UNIX98 -D_REENTRANT
-D_THREAD_SAFE -I/usr/local/include/pthread/linuxthreads"
CXXFLAGS="-DHAVE_BROKEN_REALPATH -D__USE_UNIX98 -D_REENTRANT
-D_THREAD_SAFE -I/usr/local/include/pthread/linuxthreads" ./configure
--prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
--libexecdir=/usr/local/mysql/bin --enable-thread-safe-client
--enable-local-infile --enable-assembler
--with-named-thread-libs="-DHAVE_GLIBC2_STYLE_GETHOSTBYNAME_R
-D_THREAD_SAFE -I /usr/local/include/pthread/linuxthreads
-L/usr/local/lib -llthread -llgcc_r" --disable-shared
--with-embedded-server --with-innodb

• QNX Neutrino 6.2.1 i386 with gcc 2.95.3qnx-nto 20010315:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --disable-shared

The following binaries are built on third-party systems kindly provided to Sun Microsystems, Inc. by other users. These are
provided only as a courtesy; we do not have full control over these systems, so we can provide only limited support for the binaries
built on them.

• SCO Unix 3.2v5.0.7 i386 with gcc 2.95.3:

CFLAGS="-O3 -mpentium" LDFLAGS=-static CXX=gcc CXXFLAGS="-O3 -mpentium
-felide-constructors" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --with-named-z-libs=no --enable-thread-safe-client
--disable-shared

• SCO UnixWare 7.1.4 i386 with CC 3.2:

CC=cc CFLAGS="-O" CXX=CC ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --with-named-z-libs=no --enable-thread-safe-client
--disable-shared --with-readline

• SCO OpenServer 6.0.0 i386 with CC 3.2:

CC=cc CFLAGS="-O" CXX=CC ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --with-named-z-libs=no --enable-thread-safe-client
--disable-shared --with-readline

• Compaq Tru64 OSF/1 V5.1 732 alpha with cc/cxx (Compaq C V6.3-029i / DIGITAL C++ V6.1-027):

General Installation Issues

8

CC="cc -pthread" CFLAGS="-O4 -ansi_alias -ansi_args -fast -inline
speed -speculate all" CXX="cxx -pthread" CXXFLAGS="-O4 -ansi_alias
-fast -inline speed -speculate all -noexceptions -nortti" ./configure
--prefix=/usr/local/mysql --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile
--with-named-thread-libs="-lpthread -lmach -lexc -lc" --disable-shared
--with-mysqld-ldflags=-all-static

• SGI Irix 6.5 IP32 with gcc 3.0.1:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --disable-shared

• FreeBSD/sparc64 5.0 with gcc 3.2.1:

CFLAGS=-DHAVE_BROKEN_REALPATH ./configure --prefix=/usr/local/mysql
--localstatedir=/usr/local/mysql/data --libexecdir=/usr/local/mysql/bin
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --disable-shared --with-innodb

The following compile options have been used for binary packages that we have provided in the past. These binaries no longer are
being updated, but the compile options are listed here for reference purposes.

• Linux 2.2.xx SPARC with egcs 1.1.2:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --enable-assembler --disable-shared

• Linux 2.2.x with x686 with gcc 2.95.2:

CFLAGS="-O3 -mpentiumpro" CXX=gcc CXXFLAGS="-O3 -mpentiumpro
-felide-constructors -fno-exceptions -fno-rtti" ./configure
--prefix=/usr/local/mysql --enable-assembler
--with-mysqld-ldflags=-all-static --disable-shared
--with-extra-charsets=complex

• SunOS 4.1.4 2 sun4c with gcc 2.7.2.1:

CC=gcc CXX=gcc CXXFLAGS="-O3 -felide-constructors" ./configure
--prefix=/usr/local/mysql --disable-shared --with-extra-charsets=complex
--enable-assembler

• SunOS 5.5.1 (and above) sun4u with egcs 1.0.3a or 2.90.27 or gcc 2.95.2 and newer:

CC=gcc CFLAGS="-O3" CXX=gcc CXXFLAGS="-O3 -felide-constructors
-fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql
--with-low-memory --with-extra-charsets=complex --enable-assembler

• SunOS 5.6 i86pc with gcc 2.8.1:

CC=gcc CXX=gcc CXXFLAGS=-O3 ./configure --prefix=/usr/local/mysql
--with-low-memory --with-extra-charsets=complex

• BSDI BSD/OS 3.1 i386 with gcc 2.7.2.1:

CC=gcc CXX=gcc CXXFLAGS=-O ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex

• BSDI BSD/OS 2.1 i386 with gcc 2.7.2:

CC=gcc CXX=gcc CXXFLAGS=-O3 ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex

• AIX 4.2 with gcc 2.7.2.2:

CC=gcc CXX=gcc CXXFLAGS=-O3 ./configure --prefix=/usr/local/mysql

General Installation Issues

9

--with-extra-charsets=complex

1.3. How to Get MySQL
Check our downloads page at http://dev.mysql.com/downloads/ for information about the current version of MySQL and for down-
loading instructions. For a complete up-to-date list of MySQL download mirror sites, see ht-
tp://dev.mysql.com/downloads/mirrors.html. You can also find information there about becoming a MySQL mirror site and how to
report a bad or out-of-date mirror.

Our main mirror is located at http://mirrors.sunsite.dk/mysql/.

1.4. Verifying Package Integrity Using MD5 Checksums or GnuPG
After you have downloaded the MySQL package that suits your needs and before you attempt to install it, you should make sure
that it is intact and has not been tampered with. There are three means of integrity checking:

• MD5 checksums

• Cryptographic signatures using GnuPG, the GNU Privacy Guard

• For RPM packages, the built-in RPM integrity verification mechanism

The following sections describe how to use these methods.

If you notice that the MD5 checksum or GPG signatures do not match, first try to download the respective package one more time,
perhaps from another mirror site. If you repeatedly cannot successfully verify the integrity of the package, please notify us about
such incidents, including the full package name and the download site you have been using, at <webmaster@mysql.com> or
<build@mysql.com>. Do not report downloading problems using the bug-reporting system.

1.4.1. Verifying the MD5 Checksum
After you have downloaded a MySQL package, you should make sure that its MD5 checksum matches the one provided on the
MySQL download pages. Each package has an individual checksum that you can verify with the following command, where
package_name is the name of the package you downloaded:

shell> md5sum package_name

Example:

shell> md5sum mysql-standard-6.0.12-linux-i686.tar.gz
aaab65abbec64d5e907dcd41b8699945 mysql-standard-6.0.12-linux-i686.tar.gz

You should verify that the resulting checksum (the string of hexadecimal digits) matches the one displayed on the download page
immediately below the respective package.

Note

Make sure to verify the checksum of the archive file (for example, the .zip or .tar.gz file) and not of the files
that are contained inside of the archive.

Note that not all operating systems support the md5sum command. On some, it is simply called md5, and others do not ship it at
all. On Linux, it is part of the GNU Text Utilities package, which is available for a wide range of platforms. You can download the
source code from http://www.gnu.org/software/textutils/ as well. If you have OpenSSL installed, you can use the command
openssl md5 package_name instead. A Windows implementation of the md5 command line utility is available from ht-
tp://www.fourmilab.ch/md5/. winMd5Sum is a graphical MD5 checking tool that can be obtained from ht-
tp://www.nullriver.com/index/products/winmd5sum.

1.4.2. Signature Checking Using GnuPG

Another method of verifying the integrity and authenticity of a package is to use cryptographic signatures. This is more reliable
than using MD5 checksums, but requires more work.

We sign MySQL downloadable packages with GnuPG (GNU Privacy Guard). GnuPG is an Open Source alternative to the well-

General Installation Issues

10

http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/mirrors.html
http://dev.mysql.com/downloads/mirrors.html
http://mirrors.sunsite.dk/mysql/
http://www.gnu.org/software/textutils/
http://www.fourmilab.ch/md5/
http://www.fourmilab.ch/md5/
http://www.nullriver.com/index/products/winmd5sum
http://www.nullriver.com/index/products/winmd5sum

known Pretty Good Privacy (PGP) by Phil Zimmermann. See http://www.gnupg.org/ for more information about GnuPG and how
to obtain and install it on your system. Most Linux distributions ship with GnuPG installed by default. For more information about
GnuPG, see http://www.openpgp.org/.

To verify the signature for a specific package, you first need to obtain a copy of our public GPG build key, which you can down-
load from http://keyserver.pgp.com/. The key that you want to obtain is named build@mysql.com. Alternatively, you can cut
and paste the key directly from the following text:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.0.6 (GNU/Linux)
Comment: For info see http://www.gnupg.org
mQGiBD4+owwRBAC14GIfUfCyEDSIePvEW3SAFUdJBtoQHH/nJKZyQT7h9bPlUWC3
RODjQReyCITRrdwyrKUGku2FmeVGwn2u2WmDMNABLnpprWPkBdCk96+OmSLN9brZ
fw2vOUgCmYv2hW0hyDHuvYlQA/BThQoADgj8AW6/0Lo7V1W9/8VuHP0gQwCgvzV3
BqOxRznNCRCRxAuAuVztHRcEAJooQK1+iSiunZMYD1WufeXfshc57S/+yeJkegNW
hxwR9pRWVArNYJdDRT+rf2RUe3vpquKNQU/hnEIUHJRQqYHo8gTxvxXNQc7fJYLV
K2HtkrPbP72vwsEKMYhhr0eKCbtLGfls9krjJ6sBgACyP/Vb7hiPwxh6rDZ7ITnE
kYpXBACmWpP8NJTkamEnPCia2ZoOHODANwpUkP43I7jsDmgtobZX9qnrAXw+uNDI
QJEXM6FSbi0LLtZciNlYsafwAPEOMDKpMqAK6IyisNtPvaLd8lH0bPAnWqcyefep
rv0sxxqUEMcM3o7wwgfN83POkDasDbs3pjwPhxvhz6//62zQJ7Q7TXlTUUwgUGFj
a2FnZSBzaWduaW5nIGtleSAod3d3Lm15c3FsLmNvbSkgPGJ1aWxkQG15c3FsLmNv
bT6IXQQTEQIAHQUCR6yUtAUJDTBYqAULBwoDBAMVAwIDFgIBAheAAAoJEIxxjTtQ
cuH1rpIAn38+BlBI815Dou9VXMIAsQEk4G3tAJ9+Cz69Y/Xwm611lzteJrCAA32+
aYhMBBMRAgAMBQI+PqPRBYMJZgC7AAoJEElQ4SqycpHyJOEAn1mxHijft00bKXvu
cSo/pECUmppiAJ41M9MRVj5VcdH/KN/KjRtW6tHFPYhMBBMRAgAMBQI+QoIDBYMJ
YiKJAAoJELb1zU3GuiQ/lpEAoIhpp6BozKI8p6eaabzF5MlJH58pAKCu/ROofK8J
Eg2aLos+5zEYrB/LsohGBBARAgAGBQI/rOOvAAoJEK/FI0h4g3QP9pYAoNtSISDD
AAU2HafyAYlLD/yUC4hKAJ0czMsBLbo0M/xPaJ6Ox9Q5Hmw2uIhGBBARAgAGBQI/
tEN3AAoJEIWWr6swc05mxsMAnRag9X61Ygu1kbfBiqDku4czTd9pAJ4q5W8KZ0+2
ujTrEPN55NdWtnXj4YhGBBARAgAGBQJDW7PqAAoJEIvYLm8wuUtcf3QAnRCyqF0C
pMCTdIGc7bDO5I7CIMhTAJ0UTGx0O1d/VwvdDiKWj45N2tNbYIhGBBMRAgAGBQJE
8TMmAAoJEPZJxPRgk1MMCnEAoIm2pP0sIcVh9Yo0YYGAqORrTOL3AJwIbcy+e8HM
NSoNV5u51RnrVKie34hMBBARAgAMBQJBgcsBBYMGItmLAAoJEBhZ0B9ne6HsQo0A
nA/LCTQ3P5kvJvDhg1DsfVTFnJxpAJ49WFjg/kIcaN5iP1JfaBAITZI3H4hMBBAR
AgAMBQJBgcs0BYMGItlYAAoJEIHC9+viE7aSIiMAnRVTVVAfMXvJhV6D5uHfWeeD
046TAJ4kjwP2bHyd6DjCymq+BdEDz63axohMBBARAgAMBQJBgctiBYMGItkqAAoJ
EGtw7Nldw/RzCaoAmwWM6+Rj1zl4D/PIys5nW48Hql3hAJ0bLOBthv96g+7oUy9U
j09Uh41lF4hMBBARAgAMBQJB0JMkBYMF1BFoAAoJEH0lygrBKafCYlUAoIb1r5D6
qMLMPMO1krHk3MNbX5b5AJ4vryx5fw6iJctC5GWJ+Y8ytXab34hMBBARAgAMBQJC
K1u6BYMFeUjSAAoJEOYbpIkV67mr8xMAoJMy+UJC0sqXMPSxh3BUsdcmtFS+AJ9+
Z15LpoOnAidTT/K9iODXGViK6ohMBBIRAgAMBQJAKlk6BYMHektSAAoJEDyhHzSU
+vhhJlwAnA/gOdwOThjO8O+dFtdbpKuImfXJAJ0TL53QKp92EzscZSz49lD2YkoE
qohMBBIRAgAMBQJAPfq6BYMHZqnSAAoJEPLXXGPjnGWcst8AoLQ3MJWqttMNHDbl
xSyzXhFGhRU8AJ4ukRzfNJqElQHQ00ZM2WnCVNzOUIhMBBIRAgAMBQJBDgqEBYMG
lpoIAAoJEDnKK/Q9aopf/N0AniE2fcCKO1wDIwusuGVlC+JvnnWbAKDDoUSEYuNn
5qzRbrzWW5zBno/Nb4hMBBIRAgAMBQJCgKU0BYMFI/9YAAoJEAQNwIV8g5+o4yQA
nA9QOFLV5POCddyUMqB/fnctuO9eAJ4sJbLKP/Z3SAiTpKrNo+XZRxauqIhMBBMR
AgAMBQI+TU2EBYMJV1cIAAoJEC27dr+t1MkzBQwAoJU+RuTVSn+TI+uWxUpT82/d
s5NkAJ9bnNodffyMMK7GyMiv/TzifiTD+4hMBBMRAgAMBQJB14B2BYMFzSQWAAoJ
EGbv28jNgv0+P7wAn13uu8YkhwfNMJJhWdpK2/qM/4AQAJ40drnKW2qJ5EEIJwtx
pwapgrzWiYhMBBMRAgAMBQJCGIEOBYMFjCN+AAoJEHbBAxyiMW6hoO4An0Ith3Kx
5/sixbjZR9aEjoePGTNKAJ94SldLiESaYaJx2lGIlD9bbVoHQYhdBBMRAgAdBQJH
rJTPBQkNMFioBQsHCgMEAxUDAgMWAgECF4AACgkQjHGNO1By4fV0KgCgsLpG2wP0
rc3s07Fync9g7MfairMAoIUefSNKrGTsTxvLeyH4DLzJW/QFiHsEMBECADsFAkJ3
NfU0HQBPb3BzLi4uIHNob3VsZCBoYXZlIGJlZW4gbG9jYWwhIEknbSAqc28qIHN0
dXBpZC4uLgAKCRA5yiv0PWqKX+9HAJ0WjTx/rqgouK4QCrOV/2IOU+jMQQCfYSC8
JgsIIeN8aiyuStTdYrk0VWCIjwQwEQIATwUCRW8Av0gdAFNob3VsZCBoYXZlIGJl
ZW4gYSBsb2NhbCBzaWduYXR1cmUsIG9yIHNvbWV0aGluZyAtIFdURiB3YXMgSSB0
aGlua2luZz8ACgkQOcor9D1qil+g+wCfcFWoo5qUl4XTE9K8tH3Q+xGWeYYAnjii
KxjtOXc0ls+BlqXxbfZ9uqBsiQIiBBABAgAMBQJBgcuFBYMGItkHAAoJEKrj5s5m
oURoqC8QAIISudocbJRhrTAROOPoMsReyp46Jdp3iL1oFDGcPfkZSBwWh8L+cJjh
dycIwwSeZ1D2h9S5Tc4EnoE0khsS6wBpuAuih5s//coRqIIiLKEdhTmNqulkCH5m
imCzc5zXWZDW0hpLr2InGsZMuh2QCwAkB4RTBM+r18cUXMLV4YHKyjIVaDhsiPP/
MKUj6rJNsUDmDq1GiJdOjySjtCFjYADlQYSD7zcd1vpqQLThnZBESvEoCqumEfOP
xemNU6xAB0CL+pUpB40pE6Un6Krr5h6yZxYZ/N5vzt0Y3B5UUMkgYDSpjbulNvaU
TFiOxEU3gJvXc1+h0BsxM7FwBZnuMA8LEA+UdQb76YcyuFBcROhmcEUTiducLu84
E2BZ2NSBdymRQKSinhvXsEWlH6Txm1gtJLynYsvPi4B4JxKbb+awnFPusL8W+gfz
jbygeKdyqzYgKj3M79R3geaY7Q75Kxl1UogiOKcbI5VZvg47OQCWeeERnejqEAdx
EQiwGA/ARhVOP/1l0LQA7jg2P1xTtrBqqC2ufDB+v+jhXaCXxstKSW1lTbv/b0d6
454UaOUV7RisN39pE2zFvJvY7bwfiwbUJVmYLm4rWJAEOJLIDtDRtt2h8JahDObm
3CWkpadjw57S5v1c/mn+xV9yTgVx5YUfC/788L1HNKXfeVDq8zbAiQIiBBMBAgAM
BQJCnwocBYMFBZpwAAoJENjCCglaJFfPIT4P/25zvPp8ixqV85igs3rRqMBtBsj+
5EoEW6DJnlGhoi26yf1nasC2frVasWG7i4JIm0U3WfLZERGDjR/nqlOCEqsP5gS3
43N7r4UpDkBsYh0WxH/ZtST5llFK3zd7XgtxvqKL98l/OSgijH2W2SJ9DGpjtO+T
iegq7igtJzw7Vax9z/LQH2xhRQKZR9yernwMSYaJ72i9SyWbK3k0+e95fGnlR5pF
zlGq320rYHgD7v9yoQ2t1klsAxK6e3b7Z+RiJG6cAU8o8F0kGxjWzF4v8D1op7S+
IoRdB0Bap01ko0KLyt3+g4/33/2UxsW50BtfqcvYNJvU4bZns1YSqAgDOOanBhg8
Ip5XPlDxH6J/3997n5JNj/nk5ojfd8nYfe/5TjflWNiput6tZ7frEki1wl6pTNbv
V9C1eLUJMSXfDZyHtUXmiP9DKNpsucCUeBKWRKLqnsHLkLYydsIeUJ8+ciKc+EWh
FxEY+Ml72cXAaz5BuW9L8KHNzZZfez/ZJabiARQpFfjOwAnmhzJ9r++TEKRLEr96
taUI9/8nVPvT6LnBpcM38Td6dJ639YvuH3ilAqmPPw50YvglIEe4BUYD5r52Seqc
8XQowouGOuBX4vs7zgWFuYA/s9ebfGaIw+uJd/56Xl9ll6q5CghqB/yt1EceFEnF
CAjQc2SeRo6qzx22uQINBD4+ox0QCADv4Yl/Fsx1jjCyU+eMf2sXg3ap9awQ3+XF
pmglhzdrozTZYKceXpqFPb+0ErbDVAjhgW15HjuAK+2Bvo7Ukd986jYd8uZENGJG
N3UNMIep7JfsIeFyCGP901GVbZnSXlAURyZX1TRWGndoV9YLhSN+zctT6GQBbMTv
NoPlwf0nvK//rG5lXDjXXHSHhSqxNxYy7SIzUHMQupfUNjsvCg8Rv871GRt/h+Yt
7XUTMhoJrg+oBFdBlzh2FKKcy3ordfgGtGwpN+jMG7vgXjsPwiVt/m9Jgdu4Tmn/
WggPOeSD+nyRb7cXG5avJxyKoVNw3PbXnLJff0tcWeUvMpRv8XkbAAMFB/4vCqpr
wIatF+w4AnGKbrcId+3LmZRzmtRKdOyUZgQg4JHUF5Bq7I9ls8OwMP0xnVlpJp9q
cW/AUbouXH3GRTu3Or68ouhaSbi7nF/e+fnlWOdJ3VpD15CdRxeIvhycEahNs5Yj
f0RzLOCyXMF0L74w+NxBNwDunolRWw/qgAHcVBaDni25SjQRzxuwzxvcS/jYua5B
Pk10ocbAexdM+2XSSWThtCTg5qMeyLLUExqGlPbuNaMmUyIlz4hYnSaCGQoe33bq
z/KZ91/keR1DVzK+zPm2vJUjcXHvxd5Jh9C+67CqnYfXf2lcYSSDSfop1Q5611la
F7vRgY0/DXKNYlPUiEwEGBECAAwFAkeslPwFCQ0wWN8ACgkQjHGNO1By4fWlzgCf
Qj3rkfcljYZOuLOn50J7PFuF7FoAnjwWGhwVi9+Fm2B5RZvpo++BBkdP

General Installation Issues

11

http://www.gnupg.org/
http://www.openpgp.org/
http://keyserver.pgp.com/

=Xquv
-----END PGP PUBLIC KEY BLOCK-----

To import the build key into your personal public GPG keyring, use gpg --import. For example, if you have saved the key in a
file named mysql_pubkey.asc, the import command looks like this:

shell> gpg --import mysql_pubkey.asc
gpg: key 5072E1F5: public key "MySQL Package signing key (www.mysql.com) <build@mysql.com>" imported
gpg: Total number processed: 1
gpg: imported: 1
gpg: no ultimately trusted keys found

You can also download the key from the public keyserver using the public key id, 5072E1F5:

shell> gpg --recv-keys 5072E1F5
gpg: requesting key 5072E1F5 from hkp server subkeys.pgp.net
gpg: key 5072E1F5: "MySQL Package signing key (www.mysql.com) <build@mysql.com>" 2 new signatures
gpg: no ultimately trusted keys found
gpg: Total number processed: 1
gpg: new signatures: 2

If you want to import the key into your RPM configuration to validate RPM install packages, you should be able to import the key
directly:

shell> rpm --import mysql_pubkey.asc

If you experience problems, try exporting the key from gpg and importing:

shell> gpg --export -a 5072e1f5 > 5072e1f5.asc
shell> rpm --import 5072e1f5.asc

Alternatively, rpm also supports loading the key directly from a URL, and you cas use this manual page:

shell> rpm --import http://dev.mysql.com/doc/refman/6.0/en/checking-gpg-signature.html

After you have downloaded and imported the public build key, download your desired MySQL package and the corresponding sig-
nature, which also is available from the download page. The signature file has the same name as the distribution file with an .asc
extension, as shown by the examples in the following table.

Distribution file mysql-standard-6.0.12-linux-i686.tar.gz

Signature file mysql-standard-6.0.12-linux-i686.tar.gz.asc

Make sure that both files are stored in the same directory and then run the following command to verify the signature for the distri-
bution file:

shell> gpg --verify package_name.asc

Example:

shell> gpg --verify mysql-standard-6.0.12-linux-i686.tar.gz.asc
gpg: Signature made Tue 12 Jul 2005 23:35:41 EST using DSA key ID 5072E1F5
gpg: Good signature from "MySQL Package signing key (www.mysql.com) <build@mysql.com>"

The Good signature message indicates that everything is all right. You can ignore any insecure memory warning you
might obtain.

See the GPG documentation for more information on how to work with public keys.

1.4.3. Signature Checking Using RPM

For RPM packages, there is no separate signature. RPM packages have a built-in GPG signature and MD5 checksum. You can veri-
fy a package by running the following command:

shell> rpm --checksig package_name.rpm

Example:

shell> rpm --checksig MySQL-server-6.0.12-0.glibc23.i386.rpm
MySQL-server-6.0.12-0.glibc23.i386.rpm: md5 gpg OK

General Installation Issues

12

Note

If you are using RPM 4.1 and it complains about (GPG) NOT OK (MISSING KEYS: GPG#5072e1f5), even
though you have imported the MySQL public build key into your own GPG keyring, you need to import the key into
the RPM keyring first. RPM 4.1 no longer uses your personal GPG keyring (or GPG itself). Rather, it maintains its
own keyring because it is a system-wide application and a user's GPG public keyring is a user-specific file. To import
the MySQL public key into the RPM keyring, first obtain the key as described in Section 1.4.2, “Signature Checking
Using GnuPG”. Then use rpm --import to import the key. For example, if you have saved the public key in a file
named mysql_pubkey.asc, import it using this command:

shell> rpm --import mysql_pubkey.asc

If you need to obtain the MySQL public key, see Section 1.4.2, “Signature Checking Using GnuPG”.

1.5. Installation Layouts
This section describes the default layout of the directories created by installing binary or source distributions provided by Sun Mi-
crosystems, Inc. A distribution provided by another vendor might use a layout different from those shown here.

For MySQL 6.0 on Windows, the default installation directory is C:\Program Files\MySQL\MySQL Server 6.0. (Some
Windows users prefer to install in C:\mysql, the directory that formerly was used as the default. However, the layout of the sub-
directories remains the same.) The installation directory has the following subdirectories.

Directory Contents of Directory

bin Client programs and the mysqld server

data Log files, databases

Docs Manual in CHM format

examples Example programs and scripts

include Include (header) files

lib Libraries

scripts Utility scripts

share Error message files

Installations created from our Linux RPM distributions result in files under the following system directories.

Directory Contents of Directory

/usr/bin Client programs and scripts

/usr/sbin The mysqld server

/var/lib/mysql Log files, databases

/usr/share/info Manual in Info format

/usr/share/man Unix manual pages

/usr/include/mysql Include (header) files

/usr/lib/mysql Libraries

/usr/share/mysql Error message and character set files

/usr/share/sql-bench Benchmarks

On Unix, a tar file binary distribution is installed by unpacking it at the installation location you choose (typically /
usr/local/mysql) and creates the following directories in that location.

Directory Contents of Directory

bin Client programs and the mysqld server

data Log files, databases

docs Manual in Info format

man Unix manual pages

include Include (header) files

General Installation Issues

13

lib Libraries

scripts mysql_install_db

share/mysql Error message files

sql-bench Benchmarks

A source distribution is installed after you configure and compile it. By default, the installation step installs files under /
usr/local, in the following subdirectories.

Directory Contents of Directory

bin Client programs and scripts

include/mysql Include (header) files

Docs Manual in Info, CHM formats

man Unix manual pages

lib/mysql Libraries

libexec The mysqld server

share/mysql Error message files

sql-bench Benchmarks and crash-me test

var Databases and log files

Within its installation directory, the layout of a source installation differs from that of a binary installation in the following ways:

• The mysqld server is installed in the libexec directory rather than in the bin directory.

• The data directory is var rather than data.

• mysql_install_db is installed in the bin directory rather than in the scripts directory.

• The header file and library directories are include/mysql and lib/mysql rather than include and lib.

You can create your own binary installation from a compiled source distribution by executing the scripts/
make_binary_distribution script from the top directory of the source distribution.

General Installation Issues

14

Chapter 2. Standard MySQL Installation Using a Binary
Distribution

The next several sections cover the installation of MySQL on platforms where we offer packages using the native packaging format
of the respective platform. (This is also known as performing a “binary install.”) However, binary distributions of MySQL are
available for many other platforms as well. See Chapter 9, Installing MySQL from tar.gz Packages on Other Unix-Like Systems,
for generic installation instructions for these packages that apply to all platforms.

See Chapter 1, General Installation Issues, for more information on what other binary distributions are available and how to obtain
them.

15

Chapter 3. Installing MySQL on Windows
A native Windows distribution of MySQL has been available since version 3.21 and represents a sizable percentage of the daily
downloads of MySQL. This section describes the process for installing MySQL on Windows.

Note

If you are upgrading MySQL from an existing installation older than MySQL 4.1.5, you must first perform the pro-
cedure described in Section 3.14, “Upgrading MySQL on Windows”.

To run MySQL on Windows, you need the following:

• A 32-bit Windows operating system such as Windows 2000, Windows XP, Windows Vista, Windows Server 2003, or Win-
dows Server 2008.

A Windows operating system permits you to run the MySQL server as a service. See Section 3.11, “Starting MySQL as a Win-
dows Service”.

Generally, you should install MySQL on Windows using an account that has administrator rights. Otherwise, you may en-
counter problems with certain operations such as editing the PATH environment variable or accessing the Service Con-
trol Manager. Once installed, MySQL does not need to be executed using a user with Administrator privileges.

• TCP/IP protocol support.

• Enough space on the hard drive to unpack, install, and create the databases in accordance with your requirements (generally a
minimum of 200 megabytes is recommended.)

For a list of limitations within the Windows version of MySQL, see Windows Platform Limitations.

There may also be other requirements, depending on how you plan to use MySQL:

• If you plan to connect to the MySQL server via ODBC, you need a Connector/ODBC driver. See MySQL Connector/ODBC.

• If you plan to use MySQL server with ADO.NET applications, you need the Connector/NET driver. See MySQL Connector/
NET.

• If you need tables with a size larger than 4GB, install MySQL on an NTFS or newer file system. Don't forget to use
MAX_ROWS and AVG_ROW_LENGTH when you create tables. See CREATE TABLE Syntax.

MySQL for Windows is available in several distribution formats:

• Binary distributions are available that contain a setup program that installs everything you need so that you can start the server
immediately. Another binary distribution format contains an archive that you simply unpack in the installation location and then
configure yourself. For details, see Section 3.1, “Choosing An Installation Package”.

• The source distribution contains all the code and support files for building the executables using the Visual Studio compiler sys-
tem.

Generally speaking, you should use a binary distribution that includes an installer. It is simpler to use than the others, and you need
no additional tools to get MySQL up and running. The installer for the Windows version of MySQL, combined with a GUI Config-
uration Wizard, automatically installs MySQL, creates an option file, starts the server, and secures the default user accounts.

Caution

Using virus scanning software such as Norton/Symantec Anti-Virus on directories containing MySQL data and tem-
porary tables can cause issues, both in terms of the performance of MySQL and the virus-scanning software mis-
identifying the contents of the files as containing spam. This is because of the fingerprinting mechanism used by the
virus scanning software, and the way in which MySQL rapidly updates different files, which may be identified as a
potential security risk.

After installing MySQL Server, it is recommended that you disable virus scanning on the main directory (datadir)
being used to store your MySQL table data. There is usually a system built into the virus scanning software to allow
certain directories to be specifically ignored during virus scanning.

16

http://dev.mysql.com/doc/refman/6.0/en/limits-windows.html
http://dev.mysql.com/doc/refman/5.1/en/connector-odbc.html
http://dev.mysql.com/doc/refman/5.1/en/connector-net.html
http://dev.mysql.com/doc/refman/5.1/en/connector-net.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/server-system-variables.html#sysvar_datadir

In addition, by default, MySQL creates temporary files in the standard Windows temporary directory. To prevent the
temporary files also being scanned, you should configure a separate temporary directory for MySQL temporary files
and add this to the virus scanning exclusion list. To do this, add a configuration option for the tmpdir parameter to
your my.ini configuration file. For more information, see Section 3.7, “Creating an Option File”.

The following section describes how to install MySQL on Windows using a binary distribution. To use an installation package that
does not include an installer, follow the procedure described in Section 3.5, “Installing MySQL from a Noinstall Zip Archive”. To
install using a source distribution, see Section 10.6, “Installing MySQL from Source on Windows”.

MySQL distributions for Windows can be downloaded from http://dev.mysql.com/downloads/. See Section 1.3, “How to Get
MySQL”.

3.1. Choosing An Installation Package
For MySQL 6.0, there are three installation packages to choose from when installing MySQL on Windows:

• The Essentials Package: This package has a file name similar to mysql-essential-6.0.12-win32.msi and contains
the minimum set of files needed to install MySQL on Windows, including the Configuration Wizard. This package does not in-
clude optional components such as the embedded server and benchmark suite.

• The Complete Package: This package has a file name similar to mysql-6.0.12-win32.zip and contains all files needed
for a complete Windows installation, including the Configuration Wizard. This package includes optional components such as
the embedded server and benchmark suite.

• The Noinstall Archive: This package has a file name similar to mysql-noinstall-6.0.12-win32.zip and contains
all the files found in the Complete install package, with the exception of the Configuration Wizard. This package does not in-
clude an automated installer, and must be manually installed and configured.

The Essentials package is recommended for most users. It is provided as an .msi file for use with the Windows Installer. The
Complete and Noinstall distributions are packaged as Zip archives. To use them, you must have a tool that can unpack .zip files.

Your choice of install package affects the installation process you must follow. If you choose to install either the Essentials or
Complete install packages, see Section 3.2, “Installing MySQL with the Automated Installer”. If you choose to install MySQL
from the Noinstall archive, see Section 3.5, “Installing MySQL from a Noinstall Zip Archive”.

3.2. Installing MySQL with the Automated Installer
New MySQL users can use the MySQL Installation Wizard and MySQL Configuration Wizard to install MySQL on Windows.
These are designed to install and configure MySQL in such a way that new users can immediately get started using MySQL.

The MySQL Installation Wizard and MySQL Configuration Wizard are available in the Essentials and Complete install packages.
They are recommended for most standard MySQL installations. Exceptions include users who need to install multiple instances of
MySQL on a single server host and advanced users who want complete control of server configuration.

3.3. Using the MySQL Installation Wizard
MySQL Installation Wizard is an installer for the MySQL server that uses the latest installer technologies for Microsoft Windows.
The MySQL Installation Wizard, in combination with the MySQL Configuration Wizard, allows a user to install and configure a
MySQL server that is ready for use immediately after installation.

The MySQL Installation Wizard is the standard installer for all MySQL server distributions, version 4.1.5 and higher. Users of pre-
vious versions of MySQL need to shut down and remove their existing MySQL installations manually before installing MySQL
with the MySQL Installation Wizard. See Section 3.3.6, “Upgrading MySQL with the Installation Wizard”, for more information
on upgrading from a previous version.

Microsoft has included an improved version of their Microsoft Windows Installer (MSI) in the recent versions of Windows. MSI
has become the de-facto standard for application installations on Windows 2000, Windows XP, and Windows Server 2003. The
MySQL Installation Wizard makes use of this technology to provide a smoother and more flexible installation process.

The Microsoft Windows Installer Engine was updated with the release of Windows XP; those using a previous version of Windows
can reference this Microsoft Knowledge Base article for information on upgrading to the latest version of the Windows Installer
Engine.

In addition, Microsoft has introduced the WiX (Windows Installer XML) toolkit recently. This is the first highly acknowledged
Open Source project from Microsoft. We have switched to WiX because it is an Open Source project and it allows us to handle the
complete Windows installation process in a flexible manner using scripts.

Installing MySQL on Windows

17

http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_tmpdir
http://dev.mysql.com/downloads/
http://support.microsoft.com/default.aspx?scid=kb;EN-US;292539

Improving the MySQL Installation Wizard depends on the support and feedback of users like you. If you find that the MySQL In-
stallation Wizard is lacking some feature important to you, or if you discover a bug, please report it in our bugs database using the
instructions given in How to Report Bugs or Problems.

3.3.1. Downloading and Starting the MySQL Installation Wizard
The MySQL installation packages can be downloaded from http://dev.mysql.com/downloads/. If the package you download is con-
tained within a Zip archive, you need to extract the archive first.

Note

If you are installing on Windows Vista it is best to open a network port before beginning the installation. To do this,
first ensure that you are logged in as an Administrator, go to the Control Panel, and double click the Windows
Firewall icon. Choose the Allow a program through Windows Firewall option and click the ADD
PORT button. Enter MySQL into the NAME text box and 3306 (or the port of your choice) into the PORT NUMBER text
box. Also ensure that the TCP protocol radio button is selected. If you wish, you can also limit access to the MySQL
server by choosing the CHANGE SCOPE button. Confirm your choices by clicking the OK button. If you do not open a
port prior to installation, you cannot configure the MySQL server immediately after installation. Additionally, when
running the MySQL Installation Wizard on Windows Vista, ensure that you are logged in as a user with administrat-
ive rights.

The process for starting the wizard depends on the contents of the installation package you download. If there is a setup.exe file
present, double-click it to start the installation process. If there is an .msi file present, double-click it to start the installation pro-
cess.

Starting with MySQL 6.0.6, on starting the MySQL Installation Wizard you will be asked whether you want to run the MySQL
Configuration Wizard once installation has completed and whether you want to register your installation with MySQL. If you de-
cide to send the registration information, a small file will be uploaded to the SunConnect service. A browser window will also open
and ask you to sign in to your Sun Developer Network account or to register for a new account. Your MySQL registration informa-
tion will be appended to your Sun Developer Network account, and you can use the inventory management system to keep track of
the pacakges you have registered. Only information about your server, version and environment is sent to the SunConnect system.

If an internet connection is not available, then the information will be stored in two files within the base directory of your MySQL
installation. The files are called register and svctag. You can run then run the registration once an internet connection is
available by running the SUNINVENTORY REGISTRATION link from the server installation folder within the START menu.

3.3.2. Choosing an Install Type
There are three installation types available: Typical, Complete, and Custom.

The Typical installation type installs the MySQL server, the mysql command-line client, and the command-line utilities. The
command-line clients and utilities include mysqldump, myisamchk, and several other tools to help you manage the MySQL
server.

The Complete installation type installs all components included in the installation package. The full installation package includes
components such as the embedded server library, the benchmark suite, support scripts, and documentation.

The Custom installation type gives you complete control over which packages you wish to install and the installation path that is
used. See Section 3.3.3, “The Custom Install Dialog”, for more information on performing a custom install.

If you choose the Typical or Complete installation types and click the NEXT button, you advance to the confirmation screen to
verify your choices and begin the installation. If you choose the Custom installation type and click the NEXT button, you advance
to the custom installation dialog, described in Section 3.3.3, “The Custom Install Dialog”.

3.3.3. The Custom Install Dialog
If you wish to change the installation path or the specific components that are installed by the MySQL Installation Wizard, choose
the Custom installation type.

A tree view on the left side of the custom install dialog lists all available components. Components that are not installed have a red
X icon; components that are installed have a gray icon. To change whether a component is installed, click on that component's icon
and choose a new option from the drop-down list that appears.

You can change the default installation path by clicking the CHANGE... button to the right of the displayed installation path.

After choosing your installation components and installation path, click the NEXT button to advance to the confirmation dialog.

3.3.4. The Confirmation Dialog

Installing MySQL on Windows

18

http://dev.mysql.com/doc/refman/5.1/en/bug-reports.html
http://dev.mysql.com/downloads/

Once you choose an installation type and optionally choose your installation components, you advance to the confirmation dialog.
Your installation type and installation path are displayed for you to review.

To install MySQL if you are satisfied with your settings, click the INSTALL button. To change your settings, click the BACK button.
To exit the MySQL Installation Wizard without installing MySQL, click the CANCEL button.

After installation is complete, you have the option of registering with the MySQL web site. Registration gives you access to post in
the MySQL forums at forums.mysql.com, along with the ability to report bugs at bugs.mysql.com and to subscribe to our newslet-
ter. The final screen of the installer provides a summary of the installation and gives you the option to launch the MySQL Config-
uration Wizard, which you can use to create a configuration file, install the MySQL service, and configure security settings.

3.3.5. Changes Made by MySQL Installation Wizard
Once you click the INSTALL button, the MySQL Installation Wizard begins the installation process and makes certain changes to
your system which are described in the sections that follow.

Changes to the Registry

The MySQL Installation Wizard creates one Windows registry key in a typical install situation, located in
HKEY_LOCAL_MACHINE\SOFTWARE\MySQL AB.

The MySQL Installation Wizard creates a key named after the major version of the server that is being installed, such as MySQL
Server 6.0. It contains two string values, Location and Version. The Location string contains the path to the installa-
tion directory. In a default installation it contains C:\Program Files\MySQL\MySQL Server 6.0\. The Version
string contains the release number. For example, for an installation of MySQL Server 6.0.12, the key contains a value of 6.0.12.

These registry keys are used to help external tools identify the installed location of the MySQL server, preventing a complete scan
of the hard-disk to determine the installation path of the MySQL server. The registry keys are not required to run the server, and if
you install MySQL using the noinstall Zip archive, the registry keys are not created.

Changes to the Start Menu

The MySQL Installation Wizard creates a new entry in the Windows START menu under a common MySQL menu heading named
after the major version of MySQL that you have installed. For example, if you install MySQL 6.0, the MySQL Installation Wizard
creates a MySQL Server 6.0 section in the START menu.

The following entries are created within the new START menu section:

• MySQL Command Line Client: This is a shortcut to the mysql command-line client and is configured to connect as the root
user. The shortcut prompts for a root user password when you connect.

• MySQL Server Instance Config Wizard: This is a shortcut to the MySQL Configuration Wizard. Use this shortcut to configure
a newly installed server, or to reconfigure an existing server.

• MySQL Documentation: This is a link to the MySQL server documentation that is stored locally in the MySQL server installa-
tion directory. This option is not available when the MySQL server is installed using the Essentials installation package.

Changes to the File System

The MySQL Installation Wizard by default installs the MySQL 6.0 server to C:\Program Files\MySQL\MySQL Server
6.0, where Program Files is the default location for applications in your system, and 6.0 is the major version of your
MySQL server. This is the recommended location for the MySQL server, replacing the former default location C:\mysql.

By default, all MySQL applications are stored in a common directory at C:\Program Files\MySQL, where Program
Files is the default location for applications in your Windows installation. A typical MySQL installation on a developer machine
might look like this:

C:\Program Files\MySQL\MySQL Server 6.0
C:\Program Files\MySQL\MySQL Administrator 1.0
C:\Program Files\MySQL\MySQL Query Browser 1.0

This approach makes it easier to manage and maintain all MySQL applications installed on a particular system.

In MySQL 5.1.23 and earlier, the default location for the data files used by MySQL is located within the corresponding MySQL
Server installation directory. For MySQL 5.1.24 and later, the default location of the data directory is the AppData directory con-
figured for the user that installed the MySQL application.

3.3.6. Upgrading MySQL with the Installation Wizard

Installing MySQL on Windows

19

http://forums.mysql.com
http://bugs.mysql.com

The MySQL Installation Wizard can perform server upgrades automatically using the upgrade capabilities of MSI. That means you
do not need to remove a previous installation manually before installing a new release. The installer automatically shuts down and
removes the previous MySQL service before installing the new version.

Automatic upgrades are available only when upgrading between installations that have the same major and minor version numbers.
For example, you can upgrade automatically from MySQL 4.1.5 to MySQL 4.1.6, but not from MySQL 5.1 to MySQL 6.0.

See Section 3.14, “Upgrading MySQL on Windows”.

3.4. MySQL Server Instance Configuration Wizard
The MySQL Server Instance Configuration Wizard helps automate the process of configuring your server. It creates a custom
MySQL configuration file (my.ini or my.cnf) by asking you a series of questions and then applying your responses to a tem-
plate to generate the configuration file that is tuned to your installation.

The MySQL Server Instance Configuration Wizard is included with the MySQL 6.0 server. The MySQL Server Instance Configur-
ation Wizard is only available for Windows.

3.4.1. Starting the MySQL Server Instance Configuration Wizard
The MySQL Server Instance Configuration Wizard is normally started as part of the installation process. You should only need to
run the MySQL Server Instance Configuration Wizard again when you need to change the configuration parameters of your server.

If you chose not to open a port prior to installing MySQL on Windows Vista, you can choose to use the MySQL Server Configura-
tion Wizard after installation. However, you must open a port in the Windows Firewall. To do this see the instructions given in Sec-
tion 3.3.1, “Downloading and Starting the MySQL Installation Wizard”. Rather than opening a port, you also have the option of
adding MySQL as a program that bypasses the Windows Firewall. One or the other option is sufficient — you need not do both.
Additionally, when running the MySQL Server Configuration Wizard on Windows Vista ensure that you are logged in as a user
with administrative rights.

Installing MySQL on Windows

20

You can launch the MySQL Configuration Wizard by clicking the MySQL Server Instance Config Wizard entry in the MySQL
section of the Windows START menu.

Alternatively, you can navigate to the bin directory of your MySQL installation and launch the MySQLInstanceConfig.exe
file directly.

The MySQL Server Instance Configuration Wizard places the my.ini file in the installation directory for the MySQL server. This
helps associate configuration files with particular server instances.

To ensure that the MySQL server knows where to look for the my.ini file, an argument similar to this is passed to the MySQL
server as part of the service installation:

--defaults-file="C:\Program Files\MySQL\MySQL Server 6.0\my.ini"

Here, C:\Program Files\MySQL\MySQL Server 6.0 is replaced with the installation path to the MySQL Server. The -
-defaults-file option instructs the MySQL server to read the specified file for configuration options when it starts.

Apart from making changes to the my.ini file by running the MySQL Server Instance Configuration Wizard again, you can
modify it by opening it with a text editor and making any necessary changes. You can also modify the server configuration with the
MySQL Administrator utility. For more information about server configuration, see Server Command Options.

MySQL clients and utilities such as the mysql and mysqldump command-line clients are not able to locate the my.ini file loc-
ated in the server installation directory. To configure the client and utility applications, create a new my.ini file in the Windows
installation directory (for example, C:\WINDOWS).

Under Windows Server 2003, Windows Server 2000 and Windows XP, MySQL Server Instance Configuration Wizard will config-
ure MySQL to work as a Windows service. To start and stop MySQL you use the Services application that is supplied as part of
the Windows Administrator Tools.

3.4.2. Choosing a Maintenance Option
If the MySQL Server Instance Configuration Wizard detects an existing configuration file, you have the option of either reconfigur-
ing your existing server, or removing the server instance by deleting the configuration file and stopping and removing the MySQL
service.

To reconfigure an existing server, choose the Re-configure Instance option and click the NEXT button. Any existing configuration
file is not overwritten, but renamed (within the same directory) using a timestamp (Windows) or sequential number (Linux). To re-
move the existing server instance, choose the Remove Instance option and click the NEXT button.

If you choose the Remove Instance option, you advance to a confirmation window. Click the EXECUTE button. The MySQL Server
Configuration Wizard stops and removes the MySQL service, and then deletes the configuration file. The server installation and its
data folder are not removed.

If you choose the Re-configure Instance option, you advance to the CONFIGURATION TYPE dialog where you can choose the type of
installation that you wish to configure.

3.4.3. Choosing a Configuration Type
When you start the MySQL Server Instance Configuration Wizard for a new MySQL installation, or choose the Re-configure In-
stance option for an existing installation, you advance to the CONFIGURATION TYPE dialog.

Installing MySQL on Windows

21

http://dev.mysql.com/doc/refman/6.0/en/option-file-options.html#option_general_defaults-file
http://dev.mysql.com/doc/refman/6.0/en/option-file-options.html#option_general_defaults-file
http://www.mysql.com/products/administrator/
http://dev.mysql.com/doc/refman/6.0/en/server-options.html

There are two configuration types available: Detailed Configuration and Standard Configuration. The Standard Configuration op-
tion is intended for new users who want to get started with MySQL quickly without having to make many decisions about server
configuration. The Detailed Configuration option is intended for advanced users who want more fine-grained control over server
configuration.

If you are new to MySQL and need a server configured as a single-user developer machine, the Standard Configuration should suit
your needs. Choosing the Standard Configuration option causes the MySQL Configuration Wizard to set all configuration options
automatically with the exception of Service Options and Security Options.

The Standard Configuration sets options that may be incompatible with systems where there are existing MySQL installations. If
you have an existing MySQL installation on your system in addition to the installation you wish to configure, the Detailed Config-
uration option is recommended.

To complete the Standard Configuration, please refer to the sections on Service Options and Security Options in Section 3.4.10,
“The Service Options Dialog”, and Section 3.4.11, “The Security Options Dialog”, respectively.

3.4.4. The Server Type Dialog
There are three different server types available to choose from. The server type that you choose affects the decisions that the
MySQL Server Instance Configuration Wizard makes with regard to memory, disk, and processor usage.

Installing MySQL on Windows

22

• Developer Machine: Choose this option for a typical desktop workstation where MySQL is intended only for personal use. It is
assumed that many other desktop applications are running. The MySQL server is configured to use minimal system resources.

• Server Machine: Choose this option for a server machine where the MySQL server is running alongside other server applica-
tions such as FTP, email, and Web servers. The MySQL server is configured to use a moderate portion of the system resources.

• Dedicated MySQL Server Machine: Choose this option for a server machine that is intended to run only the MySQL server. It
is assumed that no other applications are running. The MySQL server is configured to use all available system resources.

Note

By selecting one of the preconfigured configurations, the values and settings of various options in your my.cnf or
my.ini will be altered accordingly. The default values and options as described in the reference manual may there-
fore be different to the options and values that were created during the execution of the configuration wizard.

3.4.5. The Database Usage Dialog
The DATABASE USAGE dialog allows you to indicate the storage engines that you expect to use when creating MySQL tables. The
option you choose determines whether the InnoDB storage engine is available and what percentage of the server resources are
available to InnoDB.

Installing MySQL on Windows

23

• Multifunctional Database: This option enables both the InnoDB and MyISAM storage engines and divides resources evenly
between the two. This option is recommended for users who use both storage engines on a regular basis.

• Transactional Database Only: This option enables both the InnoDB and MyISAM storage engines, but dedicates most server re-
sources to the InnoDB storage engine. This option is recommended for users who use InnoDB almost exclusively and make
only minimal use of MyISAM.

• Non-Transactional Database Only: This option disables the InnoDB storage engine completely and dedicates all server re-
sources to the MyISAM storage engine. This option is recommended for users who do not use InnoDB.

The Configuration Wizard uses a template to generate the server configuration file. The DATABASE USAGE dialog sets one of the
following option strings:

Multifunctional Database: MIXED
Transactional Database Only: INNODB
Non-Transactional Database Only: MYISAM

When these options are processed through the default template (my-template.ini) the result is:

Multifunctional Database:
default-storage-engine=InnoDB
_myisam_pct=50
Transactional Database Only:
default-storage-engine=InnoDB
_myisam_pct=5
Non-Transactional Database Only:
default-storage-engine=MyISAM
_myisam_pct=100
skip-innodb

The _myisam_pct value is used to calculate the percentage of resources dedicated to MyISAM. The remaining resources are al-
located to InnoDB.

Installing MySQL on Windows

24

3.4.6. The InnoDB Tablespace Dialog
Some users may want to locate the InnoDB tablespace files in a different location than the MySQL server data directory. Placing
the tablespace files in a separate location can be desirable if your system has a higher capacity or higher performance storage
device available, such as a RAID storage system.

To change the default location for the InnoDB tablespace files, choose a new drive from the drop-down list of drive letters and
choose a new path from the drop-down list of paths. To create a custom path, click the ... button.

If you are modifying the configuration of an existing server, you must click the MODIFY button before you change the path. In this
situation you must move the existing tablespace files to the new location manually before starting the server.

3.4.7. The Concurrent Connections Dialog
To prevent the server from running out of resources, it is important to limit the number of concurrent connections to the MySQL
server that can be established. The CONCURRENT CONNECTIONS dialog allows you to choose the expected usage of your server, and
sets the limit for concurrent connections accordingly. It is also possible to set the concurrent connection limit manually.

Installing MySQL on Windows

25

• Decision Support (DSS)/OLAP: Choose this option if your server does not require a large number of concurrent connections.
The maximum number of connections is set at 100, with an average of 20 concurrent connections assumed.

• Online Transaction Processing (OLTP): Choose this option if your server requires a large number of concurrent connections.
The maximum number of connections is set at 500.

• Manual Setting: Choose this option to set the maximum number of concurrent connections to the server manually. Choose the
number of concurrent connections from the drop-down box provided, or enter the maximum number of connections into the
drop-down box if the number you desire is not listed.

3.4.8. The Networking and Strict Mode Options Dialog
Use the NETWORKING OPTIONS dialog to enable or disable TCP/IP networking and to configure the port number that is used to con-
nect to the MySQL server.

Installing MySQL on Windows

26

TCP/IP networking is enabled by default. To disable TCP/IP networking, uncheck the box next to the Enable TCP/IP Networking
option.

Port 3306 is used by default. To change the port used to access MySQL, choose a new port number from the drop-down box or
type a new port number directly into the drop-down box. If the port number you choose is in use, you are prompted to confirm your
choice of port number.

Set the SERVER SQL MODE to either enable or disable strict mode. Enabling strict mode (default) makes MySQL behave more like
other database management systems. If you run applications that rely on MySQL's old “forgiving” behavior, make sure to either
adapt those applications or to disable strict mode. For more information about strict mode, see Server SQL Modes.

3.4.9. The Character Set Dialog
The MySQL server supports multiple character sets and it is possible to set a default server character set that is applied to all tables,
columns, and databases unless overridden. Use the CHARACTER SET dialog to change the default character set of the MySQL serv-
er.

Installing MySQL on Windows

27

http://dev.mysql.com/doc/refman/6.0/en/server-sql-mode.html

• Standard Character Set: Choose this option if you want to use latin1 as the default server character set. latin1 is used for
English and many Western European languages.

• Best Support For Multilingualism: Choose this option if you want to use utf8 as the default server character set. This is a Uni-
code character set that can store characters from many different languages.

• Manual Selected Default Character Set / Collation: Choose this option if you want to pick the server's default character set
manually. Choose the desired character set from the provided drop-down list.

3.4.10. The Service Options Dialog
On Windows platforms, the MySQL server can be installed as a Windows service. When installed this way, the MySQL server can
be started automatically during system startup, and even restarted automatically by Windows in the event of a service failure.

The MySQL Server Instance Configuration Wizard installs the MySQL server as a service by default, using the service name
MySQL. If you do not wish to install the service, uncheck the box next to the Install As Windows Service option. You can change
the service name by picking a new service name from the drop-down box provided or by entering a new service name into the
drop-down box.

Note

Service names can include any legal character except forward (/) or backward (\) slashes, and must be less than 256
characters long.

Warning

If you are installing multiple versions of MySQL onto the same machine, you must choose a different service name
for each version that you install. If you do not choose a different service for each installed version then the service
manager information will be inconsistent and this will cause problems when you try to uninstall a previous version.

Installing MySQL on Windows

28

If you have already installed multiple versions using the same service name, you must manually edit the contents of
the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services parameters within the Windows re-
gistry to update the association of the service name with the correct server version.

Typically, when installing multiple versions you create a service name based on the version information. For example,
you might install MySQL 6.x as mysql6, or specific versions such as MySQL 6.0.8 as mysql60008.

To install the MySQL server as a service but not have it started automatically at startup, uncheck the box next to the Launch the
MySQL Server Automatically option.

3.4.11. The Security Options Dialog
It is strongly recommended that you set a root password for your MySQL server, and the MySQL Server Instance Configuration
Wizard requires by default that you do so. If you do not wish to set a root password, uncheck the box next to the Modify Security
Settings option.

To set the root password, enter the desired password into both the New root password and Confirm boxes. If you are reconfigur-
ing an existing server, you need to enter the existing root password into the Current root password box.

To prevent root logins from across the network, check the box next to the Root may only connect from localhost option. This in-
creases the security of your root account.

To create an anonymous user account, check the box next to the Create An Anonymous Account option. Creating an anonymous
account can decrease server security and cause login and permission difficulties. For this reason, it is not recommended.

3.4.12. The Confirmation Dialog
The final dialog in the MySQL Server Instance Configuration Wizard is the CONFIRMATION DIALOG. To start the configuration
process, click the EXECUTE button. To return to a previous dialog, click the BACK button. To exit the MySQL Server Instance Con-
figuration Wizard without configuring the server, click the CANCEL button.

Installing MySQL on Windows

29

After you click the EXECUTE button, the MySQL Server Instance Configuration Wizard performs a series of tasks and displays the
progress onscreen as the tasks are performed.

The MySQL Server Instance Configuration Wizard first determines configuration file options based on your choices using a tem-
plate prepared by MySQL developers and engineers. This template is named my-template.ini and is located in your server in-
stallation directory.

The MySQL Configuration Wizard then writes these options to the corresponding configuration file.

If you chose to create a service for the MySQL server, the MySQL Server Instance Configuration Wizard creates and starts the ser-
vice. If you are reconfiguring an existing service, the MySQL Server Instance Configuration Wizard restarts the service to apply
your configuration changes.

If you chose to set a root password, the MySQL Configuration Wizard connects to the server, sets your new root password, and
applies any other security settings you may have selected.

After the MySQL Server Instance Configuration Wizard has completed its tasks, it displays a summary. Click the FINISH button to
exit the MySQL Server Configuration Wizard.

3.5. Installing MySQL from a Noinstall Zip Archive
Users who are installing from the Noinstall package can use the instructions in this section to manually install MySQL. The process
for installing MySQL from a Zip archive is as follows:

1. Extract the archive to the desired install directory

2. Create an option file

3. Choose a MySQL server type

Installing MySQL on Windows

30

4. Start the MySQL server

5. Secure the default user accounts

This process is described in the sections that follow.

3.6. Extracting the Install Archive
To install MySQL manually, do the following:

1. If you are upgrading from a previous version please refer to Section 3.14, “Upgrading MySQL on Windows”, before begin-
ning the upgrade process.

2. Make sure that you are logged in as a user with administrator privileges.

3. Choose an installation location. Traditionally, the MySQL server is installed in C:\mysql. The MySQL Installation Wizard
installs MySQL under C:\Program Files\MySQL. If you do not install MySQL at C:\mysql, you must specify the
path to the install directory during startup or in an option file. See Section 3.7, “Creating an Option File”.

4. Extract the install archive to the chosen installation location using your preferred Zip archive tool. Some tools may extract the
archive to a folder within your chosen installation location. If this occurs, you can move the contents of the subfolder into the
chosen installation location.

3.7. Creating an Option File
If you need to specify startup options when you run the server, you can indicate them on the command line or place them in an op-
tion file. For options that are used every time the server starts, you may find it most convenient to use an option file to specify your
MySQL configuration. This is particularly true under the following circumstances:

• The installation or data directory locations are different from the default locations (C:\Program Files\MySQL\MySQL
Server 6.0 and C:\Program Files\MySQL\MySQL Server 6.0\data).

• You need to tune the server settings, such as memory, cache, or InnoDB configuration information.

When the MySQL server starts on Windows, it looks for options in two files: the my.ini file in the Windows directory, and the
C:\my.cnf file. The Windows directory typically is named something like C:\WINDOWS. You can determine its exact location
from the value of the WINDIR environment variable using the following command:

C:\> echo %WINDIR%

MySQL looks for options first in the my.ini file, and then in the my.cnf file. However, to avoid confusion, it is best if you use
only one file. If your PC uses a boot loader where C: is not the boot drive, your only option is to use the my.ini file. Whichever
option file you use, it must be a plain text file.

You can also make use of the example option files included with your MySQL distribution; see Preconfigured Option Files.

An option file can be created and modified with any text editor, such as Notepad. For example, if MySQL is installed in
E:\mysql and the data directory is in E:\mydata\data, you can create an option file containing a [mysqld] section to spe-
cify values for the basedir and datadir options:

[mysqld]
set basedir to your installation path
basedir=E:/mysql
set datadir to the location of your data directory
datadir=E:/mydata/data

Note that Windows path names are specified in option files using (forward) slashes rather than backslashes. If you do use back-
slashes, you must double them:

[mysqld]
set basedir to your installation path
basedir=E:\\mysql
set datadir to the location of your data directory
datadir=E:\\mydata\\data

MySQL Enterprise

Installing MySQL on Windows

31

http://dev.mysql.com/doc/refman/6.0/en/option-files.html#option-files-preconfigured

For expert advice on the start-up options appropriate to your circumstances, subscribe to the MySQL En-
terprise Monitor. For more information, see http://www.mysql.com/products/enterprise/advisors.html.

In MySQL 5.1.23 and earlier, the MySQL installer places the data directory directly under the directory where you install MySQL.
On MySQL 5.1.24 and later, the data directory is located within the AppData directory for the user running MySQL.

If you would like to use a data directory in a different location, you should copy the entire contents of the data directory to the
new location. For example, if you want to use E:\mydata as the data directory instead, you must do two things:

1. Move the entire data directory and all of its contents from the default location (for example C:\Program
Files\MySQL\MySQL Server 6.0\data) to E:\mydata.

2. Use a --datadir option to specify the new data directory location each time you start the server.

3.8. Selecting a MySQL Server Type
The following table shows the available servers for Windows in MySQL 6.0.

Binary Description

mysqld Optimized binary with named-pipe support

mysqld-debug Like mysqld, but compiled with full debugging and automatic memory allocation checking

All of the preceding binaries are optimized for modern Intel processors, but should work on any Intel i386-class or higher pro-
cessor.

Each of the servers in a distribution support the same set of storage engines. The SHOW ENGINES statement displays which en-
gines a given server supports.

All Windows MySQL 6.0 servers have support for symbolic linking of database directories.

MySQL supports TCP/IP on all Windows platforms. MySQL servers on Windows support named pipes as indicated in the follow-
ing list. However, the default is to use TCP/IP regardless of platform. (Named pipes are slower than TCP/IP in many Windows
configurations.)

Named pipes are enabled only if you start the server with the --enable-named-pipe option. It is necessary to use this option
explicitly because some users have experienced problems with shutting down the MySQL server when named pipes were used.

3.9. Starting the Server for the First Time
This section gives a general overview of starting the MySQL server. The following sections provide more specific information for
starting the MySQL server from the command line or as a Windows service.

The information here applies primarily if you installed MySQL using the Noinstall version, or if you wish to configure and test
MySQL manually rather than with the GUI tools.

The examples in these sections assume that MySQL is installed under the default location of C:\Program
Files\MySQL\MySQL Server 6.0. Adjust the path names shown in the examples if you have MySQL installed in a differ-
ent location.

Clients have two options. They can use TCP/IP, or they can use a named pipe if the server supports named-pipe connections.

MySQL for Windows also supports shared-memory connections if the server is started with the --shared-memory option. Cli-
ents can connect through shared memory by using the --protocol=MEMORY option.

For information about which server binary to run, see Section 3.8, “Selecting a MySQL Server Type”.

Testing is best done from a command prompt in a console window (or “DOS window”). In this way you can have the server dis-
play status messages in the window where they are easy to see. If something is wrong with your configuration, these messages
make it easier for you to identify and fix any problems.

To start the server, enter this command:

C:\> "C:\Program Files\MySQL\MySQL Server 6.0\bin\mysqld" --console

For a server that includes InnoDB support, you should see the messages similar to those following as it starts (the path names and
sizes may differ):

Installing MySQL on Windows

32

http://www.mysql.com/products/enterprise/advisors.html
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_datadir
http://dev.mysql.com/doc/refman/6.0/en/show-engines.html
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_enable-named-pipe
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_shared-memory
http://dev.mysql.com/doc/refman/6.0/en/connecting.html#option_general_protocol

InnoDB: The first specified datafile c:\ibdata\ibdata1 did not exist:
InnoDB: a new database to be created!
InnoDB: Setting file c:\ibdata\ibdata1 size to 209715200
InnoDB: Database physically writes the file full: wait...
InnoDB: Log file c:\iblogs\ib_logfile0 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile0 size to 31457280
InnoDB: Log file c:\iblogs\ib_logfile1 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile1 size to 31457280
InnoDB: Log file c:\iblogs\ib_logfile2 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile2 size to 31457280
InnoDB: Doublewrite buffer not found: creating new
InnoDB: Doublewrite buffer created
InnoDB: creating foreign key constraint system tables
InnoDB: foreign key constraint system tables created
011024 10:58:25 InnoDB: Started

When the server finishes its startup sequence, you should see something like this, which indicates that the server is ready to service
client connections:

mysqld: ready for connections
Version: '6.0.12' socket: '' port: 3306

The server continues to write to the console any further diagnostic output it produces. You can open a new console window in
which to run client programs.

If you omit the --console option, the server writes diagnostic output to the error log in the data directory (C:\Program
Files\MySQL\MySQL Server 6.0\data by default). The error log is the file with the .err extension.

Note

The accounts that are listed in the MySQL grant tables initially have no passwords. After starting the server, you
should set up passwords for them using the instructions in Chapter 11, Post-Installation Setup and Testing.

3.10. Starting MySQL from the Windows Command Line
The MySQL server can be started manually from the command line. This can be done on any version of Windows.

To start the mysqld server from the command line, you should start a console window (or “DOS window”) and enter this com-
mand:

C:\> "C:\Program Files\MySQL\MySQL Server 6.0\bin\mysqld"

The path to mysqld may vary depending on the install location of MySQL on your system.

You can stop the MySQL server by executing this command:

C:\> "C:\Program Files\MySQL\MySQL Server 6.0\bin\mysqladmin" -u root shutdown

Note

If the MySQL root user account has a password, you need to invoke mysqladmin with the -p option and supply
the password when prompted.

This command invokes the MySQL administrative utility mysqladmin to connect to the server and tell it to shut down. The com-
mand connects as the MySQL root user, which is the default administrative account in the MySQL grant system. Note that users
in the MySQL grant system are wholly independent from any login users under Windows.

If mysqld doesn't start, check the error log to see whether the server wrote any messages there to indicate the cause of the prob-
lem. The error log is located in the C:\Program Files\MySQL\MySQL Server 6.0\data directory. It is the file with a
suffix of .err. You can also try to start the server as mysqld --console; in this case, you may get some useful information
on the screen that may help solve the problem.

The last option is to start mysqld with the --standalone and --debug options. In this case, mysqld writes a log file
C:\mysqld.trace that should contain the reason why mysqld doesn't start. See MySQL Internals: Porting.

Use mysqld --verbose --help to display all the options that mysqld supports.

3.11. Starting MySQL as a Windows Service
On Windows, the recommended way to run MySQL is to install it as a Windows service, whereby MySQL starts and stops auto-
matically when Windows starts and stops. A MySQL server installed as a service can also be controlled from the command line us-

Installing MySQL on Windows

33

http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_console
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_standalone
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_debug
http://forge.mysql.com/wiki/MySQL_Internals_Porting

ing NET commands, or with the graphical Services utility. Generally, to install MySQL as a Windows service you should be
logged in using an account that has administrator rights.

The Services utility (the Windows Service Control Manager) can be found in the Windows Control Panel (under Ad-
ministrative Tools on Windows 2000, XP, Vista, and Server 2003). To avoid conflicts, it is advisable to close the Services util-
ity while performing server installation or removal operations from the command line.

Before installing MySQL as a Windows service, you should first stop the current server if it is running by using the following com-
mand:

C:\> "C:\Program Files\MySQL\MySQL Server 6.0\bin\mysqladmin"
-u root shutdown

Note

If the MySQL root user account has a password, you need to invoke mysqladmin with the -p option and supply
the password when prompted.

This command invokes the MySQL administrative utility mysqladmin to connect to the server and tell it to shut down. The com-
mand connects as the MySQL root user, which is the default administrative account in the MySQL grant system. Note that users
in the MySQL grant system are wholly independent from any login users under Windows.

Install the server as a service using this command:

C:\> "C:\Program Files\MySQL\MySQL Server 6.0\bin\mysqld" --install

The service-installation command does not start the server. Instructions for that are given later in this section.

To make it easier to invoke MySQL programs, you can add the path name of the MySQL bin directory to your Windows system
PATH environment variable:

• On the Windows desktop, right-click on the My Computer icon, and select Properties.

• Next select the Advanced tab from the SYSTEM PROPERTIES menu that appears, and click the ENVIRONMENT VARIABLES button.

• Under SYSTEM VARIABLES, select Path, and then click the EDIT button. The EDIT SYSTEM VARIABLE dialogue should appear.

• Place your cursor at the end of the text appearing in the space marked VARIABLE VALUE. (Use the End key to ensure that your
cursor is positioned at the very end of the text in this space.) Then enter the complete path name of your MySQL bin directory
(for example, C:\Program Files\MySQL\MySQL Server 6.0\bin), Note that there should be a semicolon separat-
ing this path from any values present in this field. Dismiss this dialogue, and each dialogue in turn, by clicking OK until all of
the dialogues that were opened have been dismissed. You should now be able to invoke any MySQL executable program by
typing its name at the DOS prompt from any directory on the system, without having to supply the path. This includes the serv-
ers, the mysql client, and all MySQL command-line utilities such as mysqladmin and mysqldump.

You should not add the MySQL bin directory to your Windows PATH if you are running multiple MySQL servers on the same
machine.

Warning

You must exercise great care when editing your system PATH by hand; accidental deletion or modification of any por-
tion of the existing PATH value can leave you with a malfunctioning or even unusable system.

The following additional arguments can be used in MySQL 6.0 when installing the service:

• You can specify a service name immediately following the --install option. The default service name is MySQL.

• If a service name is given, it can be followed by a single option. By convention, this should be
--defaults-file=file_name to specify the name of an option file from which the server should read options when it
starts.

The use of a single option other than --defaults-file is possible but discouraged. --defaults-file is more flexible
because it enables you to specify multiple startup options for the server by placing them in the named option file.

• You can also specify a --local-service option following the service name. This causes the server to run using the Loc-
alService Windows account that has limited system privileges. This account is available only for Windows XP or newer. If
both --defaults-file and --local-service are given following the service name, they can be in any order.

Installing MySQL on Windows

34

http://dev.mysql.com/doc/refman/6.0/en/option-file-options.html#option_general_defaults-file
http://dev.mysql.com/doc/refman/6.0/en/option-file-options.html#option_general_defaults-file
http://dev.mysql.com/doc/refman/6.0/en/option-file-options.html#option_general_defaults-file
http://dev.mysql.com/doc/refman/6.0/en/option-file-options.html#option_general_defaults-file
http://dev.mysql.com/doc/refman/6.0/en/option-file-options.html#option_general_defaults-file

For a MySQL server that is installed as a Windows service, the following rules determine the service name and option files that the
server uses:

• If the service-installation command specifies no service name or the default service name (MySQL) following the --install
option, the server uses the a service name of MySQL and reads options from the [mysqld] group in the standard option files.

• If the service-installation command specifies a service name other than MySQL following the --install option, the server
uses that service name. It reads options from the [mysqld] group and the group that has the same name as the service in the
standard option files. This allows you to use the [mysqld] group for options that should be used by all MySQL services, and
an option group with the service name for use by the server installed with that service name.

• If the service-installation command specifies a --defaults-file option after the service name, the server reads options
only from the [mysqld] group of the named file and ignores the standard option files.

As a more complex example, consider the following command:

C:\> "C:\Program Files\MySQL\MySQL Server 6.0\bin\mysqld"
--install MySQL --defaults-file=C:\my-opts.cnf

Here, the default service name (MySQL) is given after the --install option. If no --defaults-file option had been given,
this command would have the effect of causing the server to read the [mysqld] group from the standard option files. However,
because the --defaults-file option is present, the server reads options from the [mysqld] option group, and only from the
named file.

You can also specify options as Start parameters in the Windows Services utility before you start the MySQL service.

Once a MySQL server has been installed as a service, Windows starts the service automatically whenever Windows starts. The ser-
vice also can be started immediately from the Services utility, or by using a NET START MySQL command. The NET com-
mand is not case sensitive.

When run as a service, mysqld has no access to a console window, so no messages can be seen there. If mysqld does not start,
check the error log to see whether the server wrote any messages there to indicate the cause of the problem. The error log is located
in the MySQL data directory (for example, C:\Program Files\MySQL\MySQL Server 6.0\data). It is the file with a
suffix of .err.

When a MySQL server has been installed as a service, and the service is running, Windows stops the service automatically when
Windows shuts down. The server also can be stopped manually by using the Services utility, the NET STOP MySQL com-
mand, or the mysqladmin shutdown command.

You also have the choice of installing the server as a manual service if you do not wish for the service to be started automatically
during the boot process. To do this, use the --install-manual option rather than the --install option:

C:\> "C:\Program Files\MySQL\MySQL Server 6.0\bin\mysqld" --install-manual

To remove a server that is installed as a service, first stop it if it is running by executing NET STOP MySQL. Then use the -
-remove option to remove it:

C:\> "C:\Program Files\MySQL\MySQL Server 6.0\bin\mysqld" --remove

If mysqld is not running as a service, you can start it from the command line. For instructions, see Section 3.10, “Starting MySQL
from the Windows Command Line”.

Please see Section 3.13, “Troubleshooting a MySQL Installation Under Windows”, if you encounter difficulties during installation.

3.12. Testing The MySQL Installation
You can test whether the MySQL server is working by executing any of the following commands:

C:\> "C:\Program Files\MySQL\MySQL Server 6.0\bin\mysqlshow"
C:\> "C:\Program Files\MySQL\MySQL Server 6.0\bin\mysqlshow" -u root mysql
C:\> "C:\Program Files\MySQL\MySQL Server 6.0\bin\mysqladmin" version status proc
C:\> "C:\Program Files\MySQL\MySQL Server 6.0\bin\mysql" test

If mysqld is slow to respond to TCP/IP connections from client programs, there is probably a problem with your DNS. In this
case, start mysqld with the --skip-name-resolve option and use only localhost and IP numbers in the Host column of
the MySQL grant tables.

You can force a MySQL client to use a named-pipe connection rather than TCP/IP by specifying the --pipe or -

Installing MySQL on Windows

35

http://dev.mysql.com/doc/refman/6.0/en/option-file-options.html#option_general_defaults-file
http://dev.mysql.com/doc/refman/6.0/en/option-file-options.html#option_general_defaults-file
http://dev.mysql.com/doc/refman/6.0/en/option-file-options.html#option_general_defaults-file
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_skip-name-resolve
http://dev.mysql.com/doc/refman/6.0/en/connecting.html#option_general_pipe

-protocol=PIPE option, or by specifying . (period) as the host name. Use the --socket option to specify the name of the
pipe if you do not want to use the default pipe name.

Note that if you have set a password for the root account, deleted the anonymous account, or created a new user account, then
you must use the appropriate -u and -p options with the commands shown above in order to connect with the MySQL Server. See
Connecting to the MySQL Server.

For more information about mysqlshow, see mysqlshow.

3.13. Troubleshooting a MySQL Installation Under Windows
When installing and running MySQL for the first time, you may encounter certain errors that prevent the MySQL server from start-
ing. The purpose of this section is to help you diagnose and correct some of these errors.

Your first resource when troubleshooting server issues is the error log. The MySQL server uses the error log to record information
relevant to the error that prevents the server from starting. The error log is located in the data directory specified in your my.ini
file. The default data directory location is C:\Program Files\MySQL\MySQL Server 6.0\data. See The Error Log.

Another source of information regarding possible errors is the console messages displayed when the MySQL service is starting.
Use the NET START MySQL command from the command line after installing mysqld as a service to see any error messages re-
garding the starting of the MySQL server as a service. See Section 3.11, “Starting MySQL as a Windows Service”.

The following examples show other common error messages you may encounter when installing MySQL and starting the server for
the first time:

• If the MySQL server cannot find the mysql privileges database or other critical files, you may see these messages:

System error 1067 has occurred.
Fatal error: Can't open privilege tables: Table 'mysql.host' doesn't exist

These messages often occur when the MySQL base or data directories are installed in different locations than the default loca-
tions (C:\Program Files\MySQL\MySQL Server 6.0 and C:\Program Files\MySQL\MySQL Server
6.0\data, respectively).

This situation may occur when MySQL is upgraded and installed to a new location, but the configuration file is not updated to
reflect the new location. In addition, there may be old and new configuration files that conflict. Be sure to delete or rename any
old configuration files when upgrading MySQL.

If you have installed MySQL to a directory other than C:\Program Files\MySQL\MySQL Server 6.0, you need to
ensure that the MySQL server is aware of this through the use of a configuration (my.ini) file. The my.ini file needs to be
located in your Windows directory, typically C:\WINDOWS. You can determine its exact location from the value of the
WINDIR environment variable by issuing the following command from the command prompt:

C:\> echo %WINDIR%

An option file can be created and modified with any text editor, such as Notepad. For example, if MySQL is installed in
E:\mysql and the data directory is D:\MySQLdata, you can create the option file and set up a [mysqld] section to spe-
cify values for the basedir and datadir options:

[mysqld]
set basedir to your installation path
basedir=E:/mysql
set datadir to the location of your data directory
datadir=D:/MySQLdata

Note that Windows path names are specified in option files using (forward) slashes rather than backslashes. If you do use back-
slashes, you must double them:

[mysqld]
set basedir to your installation path
basedir=C:\\Program Files\\MySQL\\MySQL Server 6.0
set datadir to the location of your data directory
datadir=D:\\MySQLdata

If you change the datadir value in your MySQL configuration file, you must move the contents of the existing MySQL data
directory before restarting the MySQL server.

See Section 3.7, “Creating an Option File”.

• If you reinstall or upgrade MySQL without first stopping and removing the existing MySQL service and install MySQL using
the MySQL Configuration Wizard, you may see this error:

Installing MySQL on Windows

36

http://dev.mysql.com/doc/refman/6.0/en/connecting.html#option_general_protocol
http://dev.mysql.com/doc/refman/6.0/en/connecting.html#option_general_socket
http://dev.mysql.com/doc/refman/6.0/en/connecting.html
http://dev.mysql.com/doc/refman/6.0/en/mysqlimport.html#mysqlshow
http://dev.mysql.com/doc/refman/6.0/en/error-log.html

Error: Cannot create Windows service for MySql. Error: 0

This occurs when the Configuration Wizard tries to install the service and finds an existing service with the same name.

One solution to this problem is to choose a service name other than mysql when using the configuration wizard. This allows
the new service to be installed correctly, but leaves the outdated service in place. Although this is harmless, it is best to remove
old services that are no longer in use.

To permanently remove the old mysql service, execute the following command as a user with administrative privileges, on the
command-line:

C:\> sc delete mysql
[SC] DeleteService SUCCESS

If the sc utility is not available for your version of Windows, download the delsrv utility from ht-
tp://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp and use the delsrv mysql syntax.

3.14. Upgrading MySQL on Windows
This section lists some of the steps you should take when upgrading MySQL on Windows.

1. Review Section 12.1, “Upgrading MySQL”, for additional information on upgrading MySQL that is not specific to Windows.

2. You should always back up your current MySQL installation before performing an upgrade. See Database Backups.

3. Download the latest Windows distribution of MySQL from http://dev.mysql.com/downloads/.

4. Before upgrading MySQL, you must stop the server. If the server is installed as a service, stop the service with the following
command from the command prompt:

C:\> NET STOP MySQL

If you are not running the MySQL server as a service, use the following command to stop it:

C:\> "C:\Program Files\MySQL\MySQL Server 6.0\bin\mysqladmin" -u root shutdown

Note

If the MySQL root user account has a password, you need to invoke mysqladmin with the -p option and supply
the password when prompted.

5. When upgrading to MySQL 6.0 from a version previous to 4.1.5, or when upgrading from a version of MySQL installed from
a Zip archive to a version of MySQL installed with the MySQL Installation Wizard, you must manually remove the previous
installation and MySQL service (if the server is installed as a service).

To remove the MySQL service, use the following command:

C:\> C:\mysql\bin\mysqld --remove

If you do not remove the existing service, the MySQL Installation Wizard may fail to properly install the new MySQL
service.

6. If you are using the MySQL Installation Wizard, start the wizard as described in Section 3.3, “Using the MySQL Installation
Wizard”.

7. If you are installing MySQL from a Zip archive, extract the archive. You may either overwrite your existing MySQL installa-
tion (usually located at C:\mysql), or install it into a different directory, such as C:\mysql5. Overwriting the existing in-
stallation is recommended.

8. If you were running MySQL as a Windows service and you had to remove the service earlier in this procedure, reinstall the
service. (See Section 3.11, “Starting MySQL as a Windows Service”.)

9. Restart the server. For example, use NET START MySQL if you run MySQL as a service, or invoke mysqld directly other-
wise.

10. If you encounter errors, see Section 3.13, “Troubleshooting a MySQL Installation Under Windows”.

Installing MySQL on Windows

37

http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp
http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp
http://dev.mysql.com/doc/refman/6.0/en/backup.html
http://dev.mysql.com/downloads/

3.15. MySQL on Windows Compared to MySQL on Unix
MySQL for Windows has proven itself to be very stable. The Windows version of MySQL has the same features as the correspond-
ing Unix version, with the following exceptions:

• Limited number of ports

Windows systems have about 4,000 ports available for client connections, and after a connection on a port closes, it takes two
to four minutes before the port can be reused. In situations where clients connect to and disconnect from the server at a high
rate, it is possible for all available ports to be used up before closed ports become available again. If this happens, the MySQL
server appears to be unresponsive even though it is running. Note that ports may be used by other applications running on the
machine as well, in which case the number of ports available to MySQL is lower.

For more information about this problem, see http://support.microsoft.com/default.aspx?scid=kb;en-us;196271.

• Concurrent reads

Before MySQL 6.0.8, the I/O subsystem depends on the pread() and pwrite() system calls to be able to mix INSERT and
SELECT. The server uses mutexes to emulate pread() and pwrite(). The implementation limits the number of open files
that MySQL can use to 2,048, which means that you cannot run as many concurrent threads on Windows as on Unix.

As of MySQL 6.0.8, native Windows file I/O calls are used, so that concurrent reads are more efficiently implemented. Also,
the limit of 2,048 open files is removed. The default is 16,384, but this can be increased by using the --open-files-limit
option.

• Blocking read

MySQL uses a blocking read for each connection. That has the following implications if named-pipe connections are enabled:

• A connection is not disconnected automatically after eight hours, as happens with the Unix version of MySQL.

• If a connection hangs, it is not possible to break it without killing MySQL.

• mysqladmin kill does not work on a sleeping connection.

• mysqladmin shutdown cannot abort as long as there are sleeping connections.

We plan to fix this problem in the future.

• ALTER TABLE

While you are executing an ALTER TABLE statement, the table is locked from being used by other threads. This has to do with
the fact that on Windows, you can't delete a file that is in use by another thread. In the future, we may find some way to work
around this problem.

• DROP TABLE

DROP TABLE on a table that is in use by a MERGE table does not work on Windows because the MERGE handler does the table
mapping hidden from the upper layer of MySQL. Because Windows does not allow dropping files that are open, you first must
flush all MERGE tables (with FLUSH TABLES) or drop the MERGE table before dropping the table.

• DATA DIRECTORY and INDEX DIRECTORY

The DATA DIRECTORY and INDEX DIRECTORY options for CREATE TABLE are ignored on Windows, because Windows
doesn't support symbolic links. These options also are ignored on systems that have a non-functional realpath() call.

• DROP DATABASE

You cannot drop a database that is in use by some thread.

• Case-insensitive names

File names are not case sensitive on Windows, so MySQL database and table names are also not case sensitive on Windows.
The only restriction is that database and table names must be specified using the same case throughout a given statement. See
Identifier Case Sensitivity.

• Directory and file names

On Windows, MySQL Server supports only directory and file names that are compatible with the current ANSI code pages. For
example, the following Japanese directory name will not work in the Western locale (code page 1252):

Installing MySQL on Windows

38

http://support.microsoft.com/default.aspx?scid=kb;en-us;196271
http://dev.mysql.com/doc/refman/6.0/en/insert.html
http://dev.mysql.com/doc/refman/6.0/en/select.html
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_open-files-limit
http://dev.mysql.com/doc/refman/6.0/en/alter-table.html
http://dev.mysql.com/doc/refman/6.0/en/alter-table.html
http://dev.mysql.com/doc/refman/6.0/en/drop-table.html
http://dev.mysql.com/doc/refman/6.0/en/drop-table.html
http://dev.mysql.com/doc/refman/6.0/en/flush.html
http://dev.mysql.com/doc/refman/6.0/en/create-table.html
http://dev.mysql.com/doc/refman/6.0/en/drop-database.html
http://dev.mysql.com/doc/refman/6.0/en/identifier-case-sensitivity.html

datadir="C:/ç»´å#ºç#¾ç§#å#³äº#ä¸-æ##ç»´å#ºç#¾ç§#"

The same limitation applies to directory and file names referred to in SQL statements, such as the data file path name in LOAD
DATA INFILE.

• The “\” path name separator character

Path name components in Windows are separated by the “\” character, which is also the escape character in MySQL. If you are
using LOAD DATA INFILE or SELECT ... INTO OUTFILE, use Unix-style file names with “/” characters:

mysql> LOAD DATA INFILE 'C:/tmp/skr.txt' INTO TABLE skr;
mysql> SELECT * INTO OUTFILE 'C:/tmp/skr.txt' FROM skr;

Alternatively, you must double the “\” character:

mysql> LOAD DATA INFILE 'C:\\tmp\\skr.txt' INTO TABLE skr;
mysql> SELECT * INTO OUTFILE 'C:\\tmp\\skr.txt' FROM skr;

• Problems with pipes

Pipes do not work reliably from the Windows command-line prompt. If the pipe includes the character ^Z / CHAR(24), Win-
dows thinks that it has encountered end-of-file and aborts the program.

This is mainly a problem when you try to apply a binary log as follows:

C:\> mysqlbinlog binary_log_file | mysql --user=root

If you have a problem applying the log and suspect that it is because of a ^Z / CHAR(24) character, you can use the following
workaround:

C:\> mysqlbinlog binary_log_file --result-file=/tmp/bin.sql
C:\> mysql --user=root --execute "source /tmp/bin.sql"

The latter command also can be used to reliably read in any SQL file that may contain binary data.

• Access denied for user error

If MySQL cannot resolve your host name properly, you may get the following error when you attempt to run a MySQL client
program to connect to a server running on the same machine:

Access denied for user 'some_user'@'unknown'
to database 'mysql'

To fix this problem, you should create a file named \windows\hosts containing the following information:

127.0.0.1 localhost

Here are some open issues for anyone who might want to help us improve MySQL on Windows:

• Add macros to use the faster thread-safe increment/decrement methods provided by Windows.

Installing MySQL on Windows

39

http://dev.mysql.com/doc/refman/6.0/en/load-data.html
http://dev.mysql.com/doc/refman/6.0/en/load-data.html
http://dev.mysql.com/doc/refman/6.0/en/load-data.html
http://dev.mysql.com/doc/refman/6.0/en/select.html

Chapter 4. Installing MySQL from RPM Packages on Linux
The recommended way to install MySQL on RPM-based Linux distributions is by using the RPM packages. The RPMs that we
provide to the community should work on all versions of Linux that support RPM packages and use glibc 2.3. To obtain RPM
packages, see Section 1.3, “How to Get MySQL”.

For non-RPM Linux distributions, you can install MySQL using a .tar.gz package. See Chapter 9, Installing MySQL from
tar.gz Packages on Other Unix-Like Systems.

We do provide some platform-specific RPMs; the difference between a platform-specific RPM and a generic RPM is that a plat-
form-specific RPM is built on the targeted platform and is linked dynamically whereas a generic RPM is linked statically with
LinuxThreads.

Note

RPM distributions of MySQL often are provided by other vendors. Be aware that they may differ in features and cap-
abilities from those built by us, and that the instructions in this manual do not necessarily apply to installing them. The
vendor's instructions should be consulted instead.

If you have problems with an RPM file (for example, if you receive the error Sorry, the host 'xxxx' could not be
looked up), see Section 13.1.2, “Linux Binary Distribution Notes”.

In most cases, you need to install only the MySQL-server and MySQL-client packages to get a functional MySQL installa-
tion. The other packages are not required for a standard installation.

For upgrades, if your installation was originally produced by installing multiple RPM packages, it is best to upgrade all the pack-
ages, not just some. For example, if you previously installed the server and client RPMs, do not upgrade just the server RPM.

If you get a dependency failure when trying to install MySQL packages (for example, error: removing these packages
would break dependencies: libmysqlclient.so.10 is needed by ...), you should also install the
MySQL-shared-compat package, which includes both the shared libraries for backward compatibility (libmysqlcli-
ent.so.12 for MySQL 4.0 and libmysqlclient.so.10 for MySQL 3.23).

Some Linux distributions still ship with MySQL 3.23 and they usually link applications dynamically to save disk space. If these
shared libraries are in a separate package (for example, MySQL-shared), it is sufficient to simply leave this package installed and
just upgrade the MySQL server and client packages (which are statically linked and do not depend on the shared libraries). For dis-
tributions that include the shared libraries in the same package as the MySQL server (for example, Red Hat Linux), you could
either install our 3.23 MySQL-shared RPM, or use the MySQL-shared-compat package instead. (Do not install both.)

The RPM packages shown in the following list are available. The names shown here use a suffix of .glibc23.i386.rpm, but
particular packages can have different suffixes, as described later.

• MySQL-server-VERSION.glibc23.i386.rpm

The MySQL server. You need this unless you only want to connect to a MySQL server running on another machine.

• MySQL-client-VERSION.glibc23.i386.rpm

The standard MySQL client programs. You probably always want to install this package.

• MySQL-devel-VERSION.glibc23.i386.rpm

The libraries and include files that are needed if you want to compile other MySQL clients, such as the Perl modules.

• MySQL-debuginfo-VERSION.glibc23.i386.rpm

This package contains debugging information. debuginfo RPMs are never needed to use MySQL software; this is true both
for the server and for client programs. However, they contain additional information that might be needed by a debugger to ana-
lyze a crash.

• MySQL-shared-VERSION.glibc23.i386.rpm

This package contains the shared libraries (libmysqlclient.so*) that certain languages and applications need to dynam-
ically load and use MySQL. It contains single-threaded and thread-safe libraries. If you install this package, do not install the
MySQL-shared-compat package.

• MySQL-shared-compat-VERSION.glibc23.i386.rpm

This package includes the shared libraries for MySQL 3.23, 4.0, and so on, up to the current release. It contains single-threaded

40

and thread-safe libraries. Install this package instead of MySQL-shared if you have applications installed that are dynamic-
ally linked against older versions of MySQL but you want to upgrade to the current version without breaking the library de-
pendencies.

• MySQL-embedded-VERSION.glibc23.i386.rpm

The embedded MySQL server library.

• MySQL-test-VERSION.glibc23.i386.rpm

This package includes the MySQL test suite.

• MySQL-VERSION.src.rpm

This contains the source code for all of the previous packages. It can also be used to rebuild the RPMs on other architectures
(for example, Alpha or SPARC).

The suffix of RPM package names (following the VERSION value) has the following syntax:

.PLATFORM.CPU.rpm

The PLATFORM and CPU values indicate the type of system for which the package is built. PLATFORM indicates the platform and
CPU indicates the processor type or family.

All packages are dynamically linked against glibc 2.3. The PLATFORM value indicates whether the package is platform inde-
pendent or intended for a specific platform, as shown in the following table.

glibc23 Platform independent, should run on any Linux distribution that supports glibc 2.3

rhel3, rhel4 Red Hat Enterprise Linux 3 or 4

sles9, sles10 SuSE Linux Enterprise Server 9 or 10

In MySQL 6.0, only glibc23 packages are available currently.

The CPU value indicates the processor type or family for which the package is built.

i386 x86 processor, 386 and up

i586 x86 processor, Pentium and up

x86_64 64-bit x86 processor

ia64 Itanium (IA-64) processor

To see all files in an RPM package (for example, a MySQL-server RPM), run a command like this:

shell> rpm -qpl MySQL-server-VERSION.glibc23.i386.rpm

To perform a standard minimal installation, install the server and client RPMs:

shell> rpm -i MySQL-server-VERSION.glibc23.i386.rpm
shell> rpm -i MySQL-client-VERSION.glibc23.i386.rpm

To install only the client programs, install just the client RPM:

shell> rpm -i MySQL-client-VERSION.glibc23.i386.rpm

RPM provides a feature to verify the integrity and authenticity of packages before installing them. If you would like to learn more
about this feature, see Section 1.4, “Verifying Package Integrity Using MD5 Checksums or GnuPG”.

The server RPM places data under the /var/lib/mysql directory. The RPM also creates a login account for a user named
mysql (if one does not exist) to use for running the MySQL server, and creates the appropriate entries in /etc/init.d/ to start
the server automatically at boot time. (This means that if you have performed a previous installation and have made changes to its
startup script, you may want to make a copy of the script so that you don't lose it when you install a newer RPM.) See Sec-
tion 11.2.2, “Starting and Stopping MySQL Automatically”, for more information on how MySQL can be started automatically on
system startup.

Installing MySQL from RPM Packages on Linux

41

If you want to install the MySQL RPM on older Linux distributions that do not support initialization scripts in /etc/init.d
(directly or via a symlink), you should create a symbolic link that points to the location where your initialization scripts actually are
installed. For example, if that location is /etc/rc.d/init.d, use these commands before installing the RPM to create /
etc/init.d as a symbolic link that points there:

shell> cd /etc
shell> ln -s rc.d/init.d .

However, all current major Linux distributions should support the new directory layout that uses /etc/init.d, because it is re-
quired for LSB (Linux Standard Base) compliance.

If the RPM files that you install include MySQL-server, the mysqld server should be up and running after installation. You
should be able to start using MySQL.

If something goes wrong, you can find more information in the binary installation section. See Chapter 9, Installing MySQL from
tar.gz Packages on Other Unix-Like Systems.

Note

The accounts that are listed in the MySQL grant tables initially have no passwords. After starting the server, you
should set up passwords for them using the instructions in Chapter 11, Post-Installation Setup and Testing.

During RPM installation, a user named mysql and a group named mysql are created on the system. This is done using the
useradd, groupadd, and usermod commands. Those commands require appropriate administrative privileges, which is en-
sured for locally managed users and groups (as listed in the /etc/passwd and /etc/group files) by the RPM installation pro-
cess being run by root.

For non-local user management (LDAP, NIS, and so forth), the administrative tools may require additional authentication (such as
a password), and will fail if the installing user does not provide this authentication. Even if they fail, the RPM installation will not
abort but succeed, and this is intentional. If they failed, some of the intended transfer of ownership may be missing, and it is recom-
mended that the system administrator then manually ensures some appropriate user andgroup exists and manually transfers owner-
ship following the actions in the RPM spec file.

Installing MySQL from RPM Packages on Linux

42

Chapter 5. Installing MySQL on Mac OS X
You can install MySQL on Mac OS X 10.3.x (“Panther”) or newer using a Mac OS X binary package in PKG format instead of the
binary tarball distribution. Please note that older versions of Mac OS X (for example, 10.1.x or 10.2.x) are not supported by this
package.

The package is located inside a disk image (.dmg) file that you first need to mount by double-clicking its icon in the Finder. It
should then mount the image and display its contents.

To obtain MySQL, see Section 1.3, “How to Get MySQL”.

Note

Before proceeding with the installation, be sure to shut down all running MySQL server instances by either using the
MySQL Manager Application (on Mac OS X Server) or via mysqladmin shutdown on the command line.

To actually install the MySQL PKG file, double-click on the package icon. This launches the Mac OS X Package Installer, which
guides you through the installation of MySQL.

Due to a bug in the Mac OS X package installer, you may see this error message in the destination disk selection dialog:

You cannot install this software on this disk. (null)

If this error occurs, simply click the Go Back button once to return to the previous screen. Then click Continue to advance to
the destination disk selection again, and you should be able to choose the destination disk correctly. We have reported this bug to
Apple and it is investigating this problem.

The Mac OS X PKG of MySQL installs itself into /usr/local/mysql-VERSION and also installs a symbolic link, /
usr/local/mysql, that points to the new location. If a directory named /usr/local/mysql exists, it is renamed to /
usr/local/mysql.bak first. Additionally, the installer creates the grant tables in the mysql database by executing
mysql_install_db.

The installation layout is similar to that of a tar file binary distribution; all MySQL binaries are located in the directory /
usr/local/mysql/bin. The MySQL socket file is created as /tmp/mysql.sock by default. See Section 1.5, “Installation
Layouts”.

MySQL installation requires a Mac OS X user account named mysql. A user account with this name should exist by default on
Mac OS X 10.2 and up.

If you are running Mac OS X Server, a version of MySQL should already be installed. The following table shows the versions of
MySQL that ship with Mac OS X Server versions.

Mac OS X Server Version MySQL Version

10.2-10.2.2 3.23.51

10.2.3-10.2.6 3.23.53

10.3 4.0.14

10.3.2 4.0.16

10.4.0 4.1.10a

This manual section covers the installation of the official MySQL Mac OS X PKG only. Make sure to read Apple's help informa-
tion about installing MySQL: Run the “Help View” application, select “Mac OS X Server” help, do a search for “MySQL,” and
read the item entitled “Installing MySQL.”

If you previously used Marc Liyanage's MySQL packages for Mac OS X from http://www.entropy.ch, you can simply follow the
update instructions for packages using the binary installation layout as given on his pages.

If you are upgrading from Marc's 3.23.x versions or from the Mac OS X Server version of MySQL to the official MySQL PKG,
you also need to convert the existing MySQL privilege tables to the current format, because some new security privileges have
been added. See mysql_upgrade.

If you want MySQL to start automatically during system startup, you also need to install the MySQL Startup Item. It is part of the
Mac OS X installation disk images as a separate installation package. Simply double-click the MySQLStartupItem.pkg icon and
follow the instructions to install it. The Startup Item need be installed only once. There is no need to install it each time you up-
grade the MySQL package later.

The Startup Item for MySQL is installed into /Library/StartupItems/MySQLCOM. (Before MySQL 4.1.2, the location was

43

http://www.entropy.ch
http://dev.mysql.com/doc/refman/6.0/en/mysql-tzinfo-to-sql.html#mysql-upgrade

/Library/StartupItems/MySQL, but that collided with the MySQL Startup Item installed by Mac OS X Server.) Startup
Item installation adds a variable MYSQLCOM=-YES- to the system configuration file /etc/hostconfig. If you want to disable
the automatic startup of MySQL, simply change this variable to MYSQLCOM=-NO-.

On Mac OS X Server, the default MySQL installation uses the variable MYSQL in the /etc/hostconfig file. The MySQL
Startup Item installer disables this variable by setting it to MYSQL=-NO-. This avoids boot time conflicts with the MYSQLCOM
variable used by the MySQL Startup Item. However, it does not shut down a running MySQL server. You should do that yourself.

After the installation, you can start up MySQL by running the following commands in a terminal window. You must have adminis-
trator privileges to perform this task.

If you have installed the Startup Item, use this command:

shell> sudo /Library/StartupItems/MySQLCOM/MySQLCOM start
(Enter your password, if necessary)
(Press Control-D or enter "exit" to exit the shell)

If you don't use the Startup Item, enter the following command sequence:

shell> cd /usr/local/mysql
shell> sudo ./bin/mysqld_safe
(Enter your password, if necessary)
(Press Control-Z)
shell> bg
(Press Control-D or enter "exit" to exit the shell)

You should be able to connect to the MySQL server, for example, by running /usr/local/mysql/bin/mysql.

Note

The accounts that are listed in the MySQL grant tables initially have no passwords. After starting the server, you
should set up passwords for them using the instructions in Chapter 11, Post-Installation Setup and Testing.

You might want to add aliases to your shell's resource file to make it easier to access commonly used programs such as mysql and
mysqladmin from the command line. The syntax for bash is:

alias mysql=/usr/local/mysql/bin/mysql
alias mysqladmin=/usr/local/mysql/bin/mysqladmin

For tcsh, use:

alias mysql /usr/local/mysql/bin/mysql
alias mysqladmin /usr/local/mysql/bin/mysqladmin

Even better, add /usr/local/mysql/bin to your PATH environment variable. You can do this by modifying the appropriate
startup file for your shell. For more information, see Invoking MySQL Programs.

If you are upgrading an existing installation, note that installing a new MySQL PKG does not remove the directory of an older in-
stallation. Unfortunately, the Mac OS X Installer does not yet offer the functionality required to properly upgrade previously in-
stalled packages.

To use your existing databases with the new installation, you'll need to copy the contents of the old data directory to the new data
directory. Make sure that neither the old server nor the new one is running when you do this. After you have copied over the
MySQL database files from the previous installation and have successfully started the new server, you should consider removing
the old installation files to save disk space. Additionally, you should also remove older versions of the Package Receipt directories
located in /Library/Receipts/mysql-VERSION.pkg.

Installing MySQL on Mac OS X

44

http://dev.mysql.com/doc/refman/6.0/en/invoking-programs.html

Chapter 6. Installing MySQL on Solaris
To obtain a binary MySQL distribution for Solaris in tarball or PKG format, http://dev.mysql.com/downloads/mysql/6.0.html.

If you install MySQL using a binary tarball distribution on Solaris, you may run into trouble even before you get the MySQL distri-
bution unpacked, as the Solaris tar cannot handle long file names. This means that you may see errors when you try to unpack
MySQL.

If this occurs, you must use GNU tar (gtar) to unpack the distribution.

You can install MySQL on Solaris using a binary package in PKG format instead of the binary tarball distribution. Before installing
using the binary PKG format, you should create the mysql user and group, for example:

groupadd mysql
useradd -g mysql mysql

Some basic PKG-handling commands follow:

• To add a package:

pkgadd -d package_name.pkg

• To remove a package:

pkgrm package_name

• To get a full list of installed packages:

pkginfo

• To get detailed information for a package:

pkginfo -l package_name

• To list the files belonging to a package:

pkgchk -v package_name

• To get packaging information for an arbitrary file:

pkgchk -l -p file_name

For additional information about installing MySQL on Solaris, see Section 13.3, “Solaris Notes”.

45

http://dev.mysql.com/downloads/mysql/6.0.html

Chapter 7. Installing MySQL on i5/OS
The i5/OS POWER MySQL package was created in cooperation with IBM. MySQL works within the Portable Application Solu-
tion Environment (PASE) on the System i series of hardware and will also provide database services for the Zend Core for i5/OS.

MySQL for i5/OS is provided as a save file (.savf) package that can be downloaded and installed directly without any additional
installation steps required.

MySQL is only supported on i5/OS V5R4 or later releases. The i5/OS PASE must be installed for MySQL to operate. You must be
able to login as a user in *SECOFR class.

You should the installation notes and tips for i5/OS before starting installation. See i5/OS Installation Notes.

Note

The installation package will use an existing configuration if you have previously installed MySQL (which is identi-
fied by looking for the file /etc/my.cnf). The values for the data directory (DATADIR) and owner of the MySQL
files (USRPRF) specified during the installation will be ignored, and the values determined from the /etc/my.cnf
will be used instead.

If you want to change these parameters during a new install, you should temporarily rename /etc/my.cnf, install
MySQL using the new parameters you want to use, and then merge your previous /etc/my.cnf configuration set-
tings with the new /etc/my.cnf file that is created during installation.

To install MySQL on i5/OS, follow these steps:

1. Create a user profile MYSQL. The MYSQL user profile will own all the MySQL files and databases and be the active user used
when the MySQL server is running. The profile should be disabled so that you cannot log in as the MySQL user. To create a
user profile, use CRTUSRPRF:

CRTUSRPRF USRPRF(MYSQL) STATUS(*DISABLED) TEXT('MySQL user id')

2. On the System i machine, create a save file that will be used to receive the downloaded installation save file. The file should
be located within the General Purpose Library (QGPL):

CRTSAVF FILE(QGPL/MYSQLINST)

3. Download the MySQL installation save file in 32-bit (mysql-5.0.42-i5os-power-32bit.savf) or 64-bit
(mysql-5.0.42-i5os-power-64bit.savf) from MySQL Downloads.

4. You need to FTP the downloaded .savf file directly into the QGPL/MYSQLINST file on the System i server. You can do
this through FTP using the following steps after logging in to the System i machine:

ftp> bin
ftp> cd qgpl
ftp> put mysql-5.0.42-i5os-power.savf mysqlinst

5. Log into the System i server using a user in the *SECOFR class, such as the QSECOFR user ID.

6. You need to restore the installation library stored in the .savf save file:

RSTLIB MYSQLINST DEV(*SAVF) SAVF(QGPL/MYSQLINST)

7. You need to execute the installation command, MYSQLINST/INSMYSQL. You can specify three parameter settings during
installation:

• DIR('/opt/mysql') sets the installation location for the MySQL files. The directory will be created if it does not
already exist.

• DATADIR('/QOpenSys/mysal/data') sets the location of the directory that will be used to store the database files
and binary logs. The default setting is /QOpenSys/mysql/data. Note that if the installer detects an existing installa-
tion (due to the existence of /etc/my.cnf), then this parameter will be ignored.

• USRPRF(MYSQL) sets the user profile that will own the files that are installed. The profile will be created if it does not
already exist.

MySQL can be installed anywhere, for this example we will assume MySQL has been installed into /opt/mysql. The
MYSQL user profile that was created earlier in this sequence should be used for the profile:

46

http://dev.mysql.com/downloads

MYSQLINST/INSMYSQL DIR('/opt/mysql') DATADIR('/opt/mysqldata') USRPRF(MYSQL)

If you are updating an installation over an existing MySQL installation, you should use the same parameter values that were
used when MySQL was originally installed.

The installation copies all the necessary files into a directory matching the package version (for example mysql-
5.0.42-i5os-power-32bit), sets the ownership on those files, sets up the MySQL environment and creates the
MySQL configuration file (in /etc/my.cnf) completing all the steps in a typical binary installation process automatically.
If this is a new installation of MySQL, or if the installer detects that this is a new version (because the /etc/my.cnf file
does not exist), then the initial core MySQL databases will also be created during installation.

8. Once the installation has completed, you can delete the installation file:

DLTLIB LIB(MYSQLINST)

To start MySQL:

1. Log into the System i server using a user within the *SECOFR class, such as the QSECOFR user ID.

Note

You should start mysqld_safe using a user that in the PASE environment has the id=0 (the equivalent of the stand-
ard Unix root user). If you do not use a user with this ID then the system will be unable to change the user when ex-
ecuting mysqld as set using --user option. If this happens, mysqld may be unable to read the files located within
the MySQL data directory and the execution will fail.

2. Enter the PASE environment using call qp2term.

3. Start the MySQL server by changing to the installation directory and running mysqld_safe, specifying the user name used
to install the server. The installer conveniently installs a symbolic link to the installation directory (mysql-
5.0.42-i5os-power-32bit) as /opt/mysql/mysql:

> cd /opt/mysql/mysql
> bin/mysqld_safe --user=mysql &

You should see a message similar to the following:

Starting mysqld daemon with databases »
from /opt/mysql/mysql-enterprise-5.0.42-i5os-power-32bit/data

If you are having problems starting MySQL server, see Section 11.2.3, “Starting and Troubleshooting the MySQL Server”.

To stop MySQL:

1. Log into the System i server using the *SECOFR class, such as the QSECOFR user ID.

2. Enter the PASE environment using call qp2term.

3. Stop the MySQL server by changing into the installation directory and running mysqladmin, specifying the user name used
to install the server:

> cd /opt/mysql/mysql
> bin/mysqladmin -u root shutdown

If the session that you started and stopped MySQL are the same, you may get the log output from mysqld:

STOPPING server from pid file »
/opt/mysql/mysql-enterprise-5.0.42-i5os-power-32bit/data/I5DBX.RCHLAND.IBM.COM.pid

070718 10:34:20 mysqld ended

If the sessions used to start and stop MySQL are different, you will not receive any confirmation of the shutdown.

Note and tips

Installing MySQL on i5/OS

47

• A problem has been identified with the installation process on DBCS systems. If you are having problems install MySQL on a
DBCS system, you need to change your job's coded character set identifier (CSSID) to 37 (EBCDIC) before executing the in-
stall command, INSMYSQL. To do this, determine your existing CSSID (using DSPJOB and selecting option 2), execute CHG-
JOB CSSID(37), run INSMYSQL to install MySQL and then execute CHGJOB again with your original CSSID.

• If you want to use the Perl scripts that are included with MySQL, you need to download the iSeries Tools for Developers
(5799-PTL). See http://www-03.ibm.com/servers/enable/site/porting/tools/.

Installing MySQL on i5/OS

48

http://www-03.ibm.com/servers/enable/site/porting/tools/

Chapter 8. Installing MySQL on NetWare
Porting MySQL to NetWare was an effort spearheaded by Novell. Novell customers should be pleased to note that NetWare 6.5
ships with bundled MySQL binaries, complete with an automatic commercial use license for all servers running that version of
NetWare.

MySQL for NetWare is compiled using a combination of Metrowerks CodeWarrior for NetWare and special cross-compilation ver-
sions of the GNU autotools.

The latest binary packages for NetWare can be obtained at http://dev.mysql.com/downloads/. See Section 1.3, “How to Get
MySQL”.

To host MySQL, the NetWare server must meet these requirements:

• The latest Support Pack of NetWare 6.5 must be installed.

• The system must meet Novell's minimum requirements to run the respective version of NetWare.

• MySQL data and the program binaries must be installed on an NSS volume; traditional volumes are not supported.

To install MySQL for NetWare, use the following procedure:

1. If you are upgrading from a prior installation, stop the MySQL server. This is done from the server console, using the follow-
ing command:

SERVER: mysqladmin -u root shutdown

Note

If the MySQL root user account has a password, you need to invoke mysqladmin with the -p option and supply
the password when prompted.

2. Log on to the target server from a client machine with access to the location where you are installing MySQL.

3. Extract the binary package Zip file onto the server. Be sure to allow the paths in the Zip file to be used. It is safe to simply ex-
tract the file to SYS:\.

If you are upgrading from a prior installation, you may need to copy the data directory (for example, SYS:MYSQL\DATA), as
well as my.cnf, if you have customized it. You can then delete the old copy of MySQL.

4. You might want to rename the directory to something more consistent and easy to use. The examples in this manual use
SYS:MYSQL to refer to the installation directory.

Note that MySQL installation on NetWare does not detect if a version of MySQL is already installed outside the NetWare re-
lease. Therefore, if you have installed the latest MySQL version from the Web (for example, MySQL 4.1 or later) in
SYS:\MYSQL, you must rename the folder before upgrading the NetWare server; otherwise, files in SYS:\MySQL are over-
written by the MySQL version present in NetWare Support Pack.

5. At the server console, add a search path for the directory containing the MySQL NLMs. For example:

SERVER: SEARCH ADD SYS:MYSQL\BIN

6. Initialize the data directory and the grant tables, if necessary, by executing mysql_install_db at the server console.

7. Start the MySQL server using mysqld_safe at the server console.

8. To finish the installation, you should also add the following commands to autoexec.ncf. For example, if your MySQL in-
stallation is in SYS:MYSQL and you want MySQL to start automatically, you could add these lines:

#Starts the MySQL 6.0.x database server
SEARCH ADD SYS:MYSQL\BIN
MYSQLD_SAFE

If you are running MySQL on NetWare 6.0, we strongly suggest that you use the --skip-external-locking option on
the command line:

#Starts the MySQL 6.0.x database server

49

http://dev.mysql.com/downloads/
http://support.novell.com/filefinder/18197/index.html
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_skip-external-locking

SEARCH ADD SYS:MYSQL\BIN
MYSQLD_SAFE --skip-external-locking

It is also necessary to use CHECK TABLE and REPAIR TABLE instead of myisamchk, because myisamchk makes use of
external locking. External locking is known to have problems on NetWare 6.0; the problem has been eliminated in NetWare
6.5. Note that the use of MySQL on Netware 6.0 is not officially supported.

mysqld_safe on NetWare provides a screen presence. When you unload (shut down) the mysqld_safe NLM, the screen
does not go away by default. Instead, it prompts for user input:

<NLM has terminated; Press any key to close the screen>

If you want NetWare to close the screen automatically instead, use the --autoclose option to mysqld_safe. For ex-
ample:

#Starts the MySQL 6.0.x database server
SEARCH ADD SYS:MYSQL\BIN
MYSQLD_SAFE --autoclose

The behavior of mysqld_safe on NetWare is described further in mysqld_safe.

9. When installing MySQL, either for the first time or upgrading from a previous version, download and install the latest and ap-
propriate Perl module and PHP extensions for NetWare:

• Perl: http://forge.novell.com/modules/xfcontent/downloads.php/perl/Modules/

• PHP: http://forge.novell.com/modules/xfcontent/downloads.php/php/Modules/

If there was an existing installation of MySQL on the NetWare server, be sure to check for existing MySQL startup commands in
autoexec.ncf, and edit or delete them as necessary.

Note

The accounts that are listed in the MySQL grant tables initially have no passwords. After starting the server, you
should set up passwords for them using the instructions in Chapter 11, Post-Installation Setup and Testing.

Installing MySQL on NetWare

50

http://dev.mysql.com/doc/refman/6.0/en/check-table.html
http://dev.mysql.com/doc/refman/6.0/en/repair-table.html
http://dev.mysql.com/doc/refman/6.0/en/mysqld-safe.html#option_mysqld_safe_autoclose
http://dev.mysql.com/doc/refman/6.0/en/mysqld-safe.html
http://forge.novell.com/modules/xfcontent/downloads.php/perl/Modules/
http://forge.novell.com/modules/xfcontent/downloads.php/php/Modules/

Chapter 9. Installing MySQL from tar.gz Packages on Other
Unix-Like Systems

This section covers the installation of MySQL binary distributions that are provided for various platforms in the form of com-
pressed tar files (files with a .tar.gz extension). See Section 1.2.4, “MySQL Binaries Compiled by Sun Microsystems, Inc.”,
for a detailed list.

To obtain MySQL, see Section 1.3, “How to Get MySQL”.

MySQL tar file binary distributions have names of the form mysql-VERSION-OS.tar.gz, where VERSION is a number (for
example, 6.0.12), and OS indicates the type of operating system for which the distribution is intended (for example, pc-
linux-i686).

In addition to these generic packages, we also offer binaries in platform-specific package formats for selected platforms. See
Chapter 2, Standard MySQL Installation Using a Binary Distribution, for more information on how to install these.

You need the following tools to install a MySQL tar file binary distribution:

• GNU gunzip to uncompress the distribution.

• A reasonable tar to unpack the distribution. GNU tar is known to work. Some operating systems come with a preinstalled
version of tar that is known to have problems. For example, the tar provided with early versions of Mac OS X, SunOS 4.x
and Solaris 8 and earlier are known to have problems with long file names. On Mac OS X, you can use the preinstalled
gnutar program. On other systems with a deficient tar, you should install GNU tar first.

If you run into problems and need to file a bug report, please use the instructions in How to Report Bugs or Problems.

The basic commands that you must execute to install and use a MySQL binary distribution are:

shell> groupadd mysql
shell> useradd -g mysql mysql
shell> cd /usr/local
shell> gunzip < /path/to/mysql-VERSION-OS.tar.gz | tar xvf -
shell> ln -s full-path-to-mysql-VERSION-OS mysql
shell> cd mysql
shell> chown -R mysql .
shell> chgrp -R mysql .
shell> scripts/mysql_install_db --user=mysql
shell> chown -R root .
shell> chown -R mysql data
shell> bin/mysqld_safe --user=mysql &

Note

This procedure does not set up any passwords for MySQL accounts. After following the procedure, proceed to
Chapter 11, Post-Installation Setup and Testing.

A more detailed version of the preceding description for installing a binary distribution follows:

1. Add a login user and group for mysqld to run as:

shell> groupadd mysql
shell> useradd -g mysql mysql

These commands add the mysql group and the mysql user. The syntax for useradd and groupadd may differ slightly on
different versions of Unix, or they may have different names such as adduser and addgroup.

You might want to call the user and group something else instead of mysql. If so, substitute the appropriate name in the fol-
lowing steps.

2. Pick the directory under which you want to unpack the distribution and change location into it. In the following example, we
unpack the distribution under /usr/local. (The instructions, therefore, assume that you have permission to create files and
directories in /usr/local. If that directory is protected, you must perform the installation as root.)

shell> cd /usr/local

3. Obtain a distribution file using the instructions in Section 1.3, “How to Get MySQL”. For a given release, binary distributions
for all platforms are built from the same MySQL source distribution.

51

http://dev.mysql.com/doc/refman/5.1/en/bug-reports.html

4. Unpack the distribution, which creates the installation directory. Then create a symbolic link to that directory:

shell> gunzip < /path/to/mysql-VERSION-OS.tar.gz | tar xvf -
shell> ln -s full-path-to-mysql-VERSION-OS mysql

The tar command creates a directory named mysql-VERSION-OS. The ln command makes a symbolic link to that direct-
ory. This lets you refer more easily to the installation directory as /usr/local/mysql.

With GNU tar, no separate invocation of gunzip is necessary. You can replace the first line with the following alternative
command to uncompress and extract the distribution:

shell> tar zxvf /path/to/mysql-VERSION-OS.tar.gz

5. Change location into the installation directory:

shell> cd mysql

You will find several files and subdirectories in the mysql directory. The most important for installation purposes are the
bin and scripts subdirectories:

• The bin directory contains client programs and the server. You should add the full path name of this directory to your
PATH environment variable so that your shell finds the MySQL programs properly. See Chapter 14, Environment Vari-
ables.

• The scripts directory contains the mysql_install_db script used to initialize the mysql database containing the
grant tables that store the server access permissions.

6. Ensure that the distribution contents are accessible to mysql. If you unpacked the distribution as mysql, no further action is
required. If you unpacked the distribution as root, its contents will be owned by root. Change its ownership to mysql by
executing the following commands as root in the installation directory:

shell> chown -R mysql .
shell> chgrp -R mysql .

The first command changes the owner attribute of the files to the mysql user. The second changes the group attribute to the
mysql group.

7. If you have not installed MySQL before, you must create the MySQL data directory and initialize the grant tables:

shell> scripts/mysql_install_db --user=mysql

If you run the command as root, include the --user option as shown. If you run the command while logged in as that user,
you can omit the --user option.

The command should create the data directory and its contents with mysql as the owner.

After creating or updating the grant tables, you need to restart the server manually.

8. Most of the MySQL installation can be owned by root if you like. The exception is that the data directory must be owned by
mysql. To accomplish this, run the following commands as root in the installation directory:

shell> chown -R root .
shell> chown -R mysql data

9. If you want MySQL to start automatically when you boot your machine, you can copy support-files/mysql.server
to the location where your system has its startup files. More information can be found in the support-
files/mysql.server script itself and in Section 11.2.2, “Starting and Stopping MySQL Automatically”.

10. You can set up new accounts using the bin/mysql_setpermission script if you install the DBI and DBD::mysql Perl
modules. See mysql_setpermission. For Perl module installation instructions, see Chapter 15, Perl Installation Notes.

11. If you would like to use mysqlaccess and have the MySQL distribution in some non-standard location, you must change
the location where mysqlaccess expects to find the mysql client. Edit the bin/mysqlaccess script at approximately
line 18. Search for a line that looks like this:

$MYSQL = '/usr/local/bin/mysql'; # path to mysql executable

Change the path to reflect the location where mysql actually is stored on your system. If you do not do this, a Broken
pipe error will occur when you run mysqlaccess.

Installing MySQL from tar.gz Packages on Other
Unix-Like Systems

52

http://dev.mysql.com/doc/refman/6.0/en/mysql-fix-extensions.html#mysql-setpermission

After everything has been unpacked and installed, you should test your distribution. To start the MySQL server, use the following
command:

shell> bin/mysqld_safe --user=mysql &

If you run the command as root, you must use the --user option as shown. The value of the option is the name of the login ac-
count that you created in the first step to use for running the server. If you run the command while logged in as mysql, you can
omit the --user option.

If the command fails immediately and prints mysqld ended, you can find some information in the host_name.err file in the
data directory.

More information about mysqld_safe is given in mysqld_safe.

Note

The accounts that are listed in the MySQL grant tables initially have no passwords. After starting the server, you
should set up passwords for them using the instructions in Chapter 11, Post-Installation Setup and Testing.

Installing MySQL from tar.gz Packages on Other
Unix-Like Systems

53

http://dev.mysql.com/doc/refman/6.0/en/mysqld-safe.html

Chapter 10. MySQL Installation Using a Source Distribution
Before you proceed with an installation from source, first check whether our binary is available for your platform and whether it
works for you. We put a great deal of effort into ensuring that our binaries are built with the best possible options.

To obtain a source distribution for MySQL, Section 1.3, “How to Get MySQL”. If you want to build MySQL from source on Win-
dows, see Section 10.6, “Installing MySQL from Source on Windows”.

MySQL source distributions are provided as compressed tar archives and have names of the form mysql-VERSION.tar.gz,
where VERSION is a number like 6.0.12.

You need the following tools to build and install MySQL from source:

• GNU gunzip to uncompress the distribution.

• A reasonable tar to unpack the distribution. GNU tar is known to work. Some operating systems come with a preinstalled
version of tar that is known to have problems. For example, the tar provided with early versions of Mac OS X, SunOS 4.x
and Solaris 8 and earlier are known to have problems with long file names. On Mac OS X, you can use the preinstalled
gnutar program. On other systems with a deficient tar, you should install GNU tar first.

• A working ANSI C++ compiler. gcc 2.95.2 or later, SGI C++, and SunPro C++ are some of the compilers that are known to
work. libg++ is not needed when using gcc. gcc 2.7.x has a bug that makes it impossible to compile some perfectly legal
C++ files, such as sql/sql_base.cc. If you have only gcc 2.7.x, you must upgrade your gcc to be able to compile
MySQL. gcc 2.8.1 is also known to have problems on some platforms, so it should be avoided if a new compiler exists for the
platform. gcc 2.95.2 or later is recommended.

• A good make program. GNU make is always recommended and is sometimes required. (BSD make fails, and vendor-
provided make implementations may fail as well.) If you have problems, we recommend GNU make 3.75 or newer.

• libtool 1.5.24 or later is also recommended.

This is particularly true when building 64-bit binaries on Solaris for x86_64 processors (see Bug#31268). In addition, to guar-
antee that the binaries are 64-bit, you should do the following:

• Provide --build=x86_64-pc-solaris2.10 as a configure argument.

• Provide -m64 as part of CFLAGS, CXXFLAGS and LDFLAGS

• Run configure and make as shown here:

% LIBRARY_PATH=/usr/local/lib/amd64 ./configure
% LIBRARY_PATH=/usr/local/lib/amd64 gmake

If you are using a version of gcc recent enough to understand the -fno-exceptions option, it is very important that you use
this option. Otherwise, you may compile a binary that crashes randomly. We also recommend that you use -fe-
lide-constructors and -fno-rtti along with -fno-exceptions. When in doubt, do the following:

CFLAGS="-O3" CXX=gcc CXXFLAGS="-O3 -felide-constructors \
-fno-exceptions -fno-rtti" ./configure \
--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static

On most systems, this gives you a fast and stable binary.

If you run into problems and need to file a bug report, please use the instructions in How to Report Bugs or Problems.

10.1. Source Installation Overview
The basic commands that you must execute to install a MySQL source distribution are:

shell> groupadd mysql
shell> useradd -g mysql mysql
shell> gunzip < mysql-VERSION.tar.gz | tar -xvf -
shell> cd mysql-VERSION
shell> ./configure --prefix=/usr/local/mysql
shell> make
shell> make install
shell> cp support-files/my-medium.cnf /etc/my.cnf
shell> cd /usr/local/mysql
shell> chown -R mysql .
shell> chgrp -R mysql .

54

http://bugs.mysql.com/31268
http://dev.mysql.com/doc/refman/5.1/en/bug-reports.html

shell> bin/mysql_install_db --user=mysql
shell> chown -R root .
shell> chown -R mysql var
shell> bin/mysqld_safe --user=mysql &

If you start from a source RPM, do the following:

shell> rpmbuild --rebuild --clean MySQL-VERSION.src.rpm

This makes a binary RPM that you can install. For older versions of RPM, you may have to replace the command rpmbuild with
rpm instead.

Note

This procedure does not set up any passwords for MySQL accounts. After following the procedure, proceed to
Chapter 11, Post-Installation Setup and Testing, for post-installation setup and testing.

A more detailed version of the preceding description for installing MySQL from a source distribution follows:

1. Add a login user and group for mysqld to run as:

shell> groupadd mysql
shell> useradd -g mysql mysql

These commands add the mysql group and the mysql user. The syntax for useradd and groupadd may differ slightly on
different versions of Unix, or they may have different names such as adduser and addgroup.

You might want to call the user and group something else instead of mysql. If so, substitute the appropriate name in the fol-
lowing steps.

2. Perform the following steps as the mysql user, except as noted.

3. Pick the directory under which you want to unpack the distribution and change location into it.

4. Obtain a distribution file using the instructions in Section 1.3, “How to Get MySQL”.

5. Unpack the distribution into the current directory:

shell> gunzip < /path/to/mysql-VERSION.tar.gz | tar xvf -

This command creates a directory named mysql-VERSION.

With GNU tar, no separate invocation of gunzip is necessary. You can use the following alternative command to uncom-
press and extract the distribution:

shell> tar zxvf /path/to/mysql-VERSION-OS.tar.gz

6. Change location into the top-level directory of the unpacked distribution:

shell> cd mysql-VERSION

Note that currently you must configure and build MySQL from this top-level directory. You cannot build it in a different dir-
ectory.

7. Configure the release and compile everything:

shell> ./configure --prefix=/usr/local/mysql
shell> make

When you run configure, you might want to specify other options. Run ./configure --help for a list of options.
Section 10.2, “Typical configure Options”, discusses some of the more useful options.

If configure fails and you are going to send mail to a MySQL mailing list to ask for assistance, please include any lines
from config.log that you think can help solve the problem. Also include the last couple of lines of output from config-
ure. To file a bug report, please use the instructions in How to Report Bugs or Problems.

If the compile fails, see Section 10.4, “Dealing with Problems Compiling MySQL”, for help.

8. Install the distribution:

MySQL Installation Using a Source Distribution

55

http://dev.mysql.com/doc/refman/5.1/en/bug-reports.html

shell> make install

You might need to run this command as root.

If you want to set up an option file, use one of those present in the support-files directory as a template. For example:

shell> cp support-files/my-medium.cnf /etc/my.cnf

You might need to run this command as root.

If you want to configure support for InnoDB tables, you should edit the /etc/my.cnf file, remove the # character before
the option lines that start with innodb_..., and modify the option values to be what you want. See Using Option Files, and
InnoDB Configuration.

9. Change location into the installation directory:

shell> cd /usr/local/mysql

10. If you ran the make install command as root, the installed files will be owned by root. Ensure that the installation is
accessible to mysql by executing the following commands as root in the installation directory:

shell> chown -R mysql .
shell> chgrp -R mysql .

The first command changes the owner attribute of the files to the mysql user. The second changes the group attribute to the
mysql group.

11. If you have not installed MySQL before, you must create the MySQL data directory and initialize the grant tables:

shell> bin/mysql_install_db --user=mysql

If you run the command as root, include the --user option as shown. If you run the command while logged in as mysql,
you can omit the --user option.

The command should create the data directory and its contents with mysql as the owner.

After using mysql_install_db to create the grant tables for MySQL, you must restart the server manually. The
mysqld_safe command to do this is shown in a later step.

12. Most of the MySQL installation can be owned by root if you like. The exception is that the data directory must be owned by
mysql. To accomplish this, run the following commands as root in the installation directory:

shell> chown -R root .
shell> chown -R mysql var

13. If you want MySQL to start automatically when you boot your machine, you can copy support-files/mysql.server
to the location where your system has its startup files. More information can be found in the support-
files/mysql.server script itself; see also Section 11.2.2, “Starting and Stopping MySQL Automatically”.

14. You can set up new accounts using the bin/mysql_setpermission script if you install the DBI and DBD::mysql Perl
modules. See mysql_setpermission. For Perl module installation instructions, see Chapter 15, Perl Installation Notes.

After everything has been installed, you should test your distribution. To start the MySQL server, use the following command:

shell> /usr/local/mysql/bin/mysqld_safe --user=mysql &

If you run the command as root, you should use the --user option as shown. The value of the option is the name of the login
account that you created in the first step to use for running the server. If you run the command while logged in as that user, you can
omit the --user option.

If the command fails immediately and prints mysqld ended, you can find some information in the host_name.err file in the
data directory.

More information about mysqld_safe is given in mysqld_safe.

Note

MySQL Installation Using a Source Distribution

56

http://dev.mysql.com/doc/refman/6.0/en/option-files.html
http://dev.mysql.com/doc/refman/6.0/en/innodb-configuration.html
http://dev.mysql.com/doc/refman/6.0/en/mysql-fix-extensions.html#mysql-setpermission
http://dev.mysql.com/doc/refman/6.0/en/mysqld-safe.html

The accounts that are listed in the MySQL grant tables initially have no passwords. After starting the server, you
should set up passwords for them using the instructions in Chapter 11, Post-Installation Setup and Testing.

10.2. Typical configure Options
The configure script gives you a great deal of control over how you configure a MySQL source distribution. Typically you do
this using options on the configure command line. You can also affect configure using certain environment variables. See
Chapter 14, Environment Variables. For a full list of options supported by configure, run this command:

shell> ./configure --help

A list of the available configure options is provided in the table below.

Table 10.1. Build (configure) Reference

Formats Description Default Introduced Removed

--bindir=DIR User executables EPREFIX/bin

--build=BUILD Configure for building on BUILD guessed

--cache-file=FILE Cache test results in FILE disabled

-C Alias for `--cache-file=config.cache'

--config-cache

--datadir=DIR Read-only architecture-independent
data

PREFIX/share

--disable-FEATURE Do not include FEATURE

--disable-dependency-tracking Disable dependency tracking

--disable-grant-options Disable GRANT options

--disable-largefile Omit support for large files

--disable-libtool-lock Disable libtool lock

--disable-thread-safe-client Compile the client without threads

--enable-FEATURE Enable FEATURE

--enable-assembler Use assembler versions of some string
functions if available

--enable-debug-sync Compile in Debug Sync facility 6.0.6

--enable-dependency-tracking Do not reject slow dependency ex-
tractors

--enable-dtrace Compile in DTrace support 6.0.4

--enable-fast-install Optimize for fast installation yes

--enable-local-infile Enable LOAD DATA LOCAL IN-
FILE

disabled

--enable-shared Build shared libraries yes

--enable-static Build static libraries yes

--enable-thread-safe-client Compile the client with threads

--exec-prefix=EPREFIX Install architecture-dependent files in
EPREFIX

-h Display this help and exit

--help

--help=short Display options specific to this pack-
age

--help=recursive Display the short help of all the in-
cluded packages

--host=HOST Cross-compile to build programs to
run on HOST

--includedir=DIR C header files PREFIX/include

--infodir=DIR Info documentation PREFIX/info

--libdir=DIR Object code libraries EPREFIX/lib

MySQL Installation Using a Source Distribution

57

Formats Description Default Introduced Removed

--libexecdir=DIR Program executables EPREFIX/libexec

--localstatedir=DIR Modifiable single-machine data PREFIX/var

--mandir=DIR man documentation PREFIX/man

-n Do not create output files

--no-create

--oldincludedir=DIR C header files for non-gcc /usr/include

--prefix=PREFIX Install architecture-independent files
in PREFIX

--program-prefix=PREFIX Prepend PREFIX to installed program
names

--program-suffix=SUFFIX Append SUFFIX to installed program
names

-
-pro-
gram-transform-name=PROGRAM

run sed PROGRAM on installed pro-
gram names

-q Do not print `checking...' messages

--quiet

--sbindir=DIR System admin executables EPREFIX/sbin

--sharedstatedir=DIR Modifiable architecture-independent
data

PREFIX/com

--srcdir=DIR Find the sources in DIR configure directory or ..

--sysconfdir=DIR Read-only single-machine data PREFIX/etc

--target=TARGET Configure for building compilers for
TARGET

-V Display version information and exit

--version

--with-PACKAGE Use PACKAGE

--with-archive-storage-engine Enable the Archive Storage Engine no

--with-atomic-ops Implement atomic operations using
pthread rwlocks or atomic CPU in-
structions for multi-processor

--with-berkeley-db-includes Find Berkeley DB headers in DIR

--with-big-tables Support tables with more than 4 G
rows even on 32 bit platforms

--with-blackhole-storage-engine Enable the Blackhole Storage Engine no

--with-charset Default character set

--with-client-ldflags Extra linking arguments for clients

--with-collation Default collation

--with-comment Comment about compilation environ-
ment

--with-csv-storage-engine Enable the CSV Storage Engine yes

--with-darwin-mwcc Use Metrowerks CodeWarrior wrap-
pers on OS X/Darwin

--with-debug Add debug code

--with-debug=full Add debug code (adds memory
checker, very slow)

--with-embedded-privilege-control Build parts to check user's privileges
(only affects embedded library)

--with-embedded-server Build the embedded server

--with-error-inject Enable error injection in MySQL
Server

--with-example-storage-engine Enable the Example Storage Engine no

--with-extra-charsets Use charsets in addition to default

MySQL Installation Using a Source Distribution

58

Formats Description Default Introduced Removed

--with-fast-mutexes Compile with fast mutexes enabled

--with-federated-storage-engine Enable federated storage engine no

--with-gnu-ld Assume the C compiler uses GNU ld no

--with-innodb Enable innobase storage engine no

--with-lib-ccflags Extra CC options for libraries

--with-libevent Include libevent for thread-pool sup-
port

6.0.4

--with-low-memory Try to use less memory to compile to
avoid memory limitations

--with-machine-type Set the machine type, like "powerpc"

--with-maria-temp-tables Make the temporary tables within
MySQL use the Maria storage engine

6.0.6

--with-max-indexes=N Sets the maximum number of indexes
per table

64

--with-mysqld-ldflags Extra linking arguments for mysqld

--with-mysqld-libs Extra libraries to link with for mysqld

--with-mysqld-user What user the mysqld daemon shall
be run as

--with-named-curses-libs Use specified curses libraries

--with-named-thread-libs Use specified thread libraries

--with-ndb-ccflags Extra CC options for ndb compile

--with-ndb-docs Include the NDB Cluster ndbapi and
mgmapi documentation

--with-ndb-port Port for NDB Cluster management
server

--with-ndb-port-base Port for NDB Cluster management
server

--with-ndb-sci=DIR Provide MySQL with a custom loca-
tion of sci library

--with-ndb-test Include the NDB Cluster ndbapi test
programs

--with-ndbcluster Include the NDB Cluster table hand-
ler

no

--with-openssl-libs Find OpenSSL libraries in DIR

--with-other-libc=DIR Link against libc and other standard
libraries installed in the specified non-
standard location

--with-pic Try to use only PIC/non-PIC objects Use both

--with-plugin-PLUGIN Forces the named plugin to be linked
into mysqld statically

--with-plugins Plugins to include in mysqld none

--with-pstack Use the pstack backtrace library

--with-pthread Force use of pthread library

--with-row-based-replication Include row-based replication

--with-server-suffix Append value to the version string

--with-ssl=DIR Include SSL support

--with-system-type Set the system type, like "sun-solar-
is10"

--with-tags Include additional configurations automatic

--with-tcp-port Which port to use for MySQL ser-
vices

3306

--with-unix-socket-path Where to put the unix-domain socket

--with-zlib-dir=no|bundled|DIR Provide MySQL with a custom loca-

MySQL Installation Using a Source Distribution

59

Formats Description Default Introduced Removed

tion of compression library

--without-PACKAGE Do not use PACKAGE

--without-debug Build a production version without
debugging code

--without-docs Skip building of the documentation

--without-extra-tools Skip building utilities in the tools dir-
ectory

--without-geometry Do not build geometry-related parts

--without-libedit Use system libedit instead of bundled
copy

--without-libevent Do not include libevent for thread-
pool support

6.0.4

--without-man Skip building of the man pages

--without-ndb-binlog Disable ndb binlog

--without-ndb-debug Disable special ndb debug features

--without-plugin-PLUGIN Exclude PLUGIN

--without-query-cache Do not build query cache

--without-readline Use system readline instead of
bundled copy

--without-row-based-replication Don't include row-based replication

--without-server Only build the client

--without-uca Skip building of the national Unicode
collations

Some of the configure options available are described here. For options that may be of use if you have difficulties building
MySQL, see Section 10.4, “Dealing with Problems Compiling MySQL”.

• To compile just the MySQL client libraries and client programs and not the server, use the --without-server option:

shell> ./configure --without-server

If you have no C++ compiler, some client programs such as mysql cannot be compiled because they require C++.. In this case,
you can remove the code in configure that tests for the C++ compiler and then run ./configure with the -
-without-server option. The compile step should still try to build all clients, but you can ignore any warnings about files
such as mysql.cc. (If make stops, try make -k to tell it to continue with the rest of the build even if errors occur.)

• If you want to build the embedded MySQL library (libmysqld.a), use the --with-embedded-server option.

• If you don't want your log files and database directories located under /usr/local/var, use a configure command
something like one of these:

shell> ./configure --prefix=/usr/local/mysql
shell> ./configure --prefix=/usr/local \

--localstatedir=/usr/local/mysql/data

The first command changes the installation prefix so that everything is installed under /usr/local/mysql rather than the
default of /usr/local. The second command preserves the default installation prefix, but overrides the default location for
database directories (normally /usr/local/var) and changes it to /usr/local/mysql/data.

You can also specify the installation directory and data directory locations at server startup time by using the --basedir and
--datadir options. These can be given on the command line or in an MySQL option file, although it is more common to use
an option file. See Using Option Files.

• If you are using Unix and you want the MySQL socket file location to be somewhere other than the default location (normally
in the directory /tmp or /var/run), use a configure command like this:

shell> ./configure \
--with-unix-socket-path=/usr/local/mysql/tmp/mysql.sock

The socket file name must be an absolute path name. You can also change the location of mysql.sock at server startup by

MySQL Installation Using a Source Distribution

60

http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_basedir
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_datadir
http://dev.mysql.com/doc/refman/6.0/en/option-files.html

using a MySQL option file. See How to Protect or Change the MySQL Unix Socket File.

• If you want to compile statically linked programs (for example, to make a binary distribution, to get better performance, or to
work around problems with some Red Hat Linux distributions), run configure like this:

shell> ./configure --with-client-ldflags=-all-static \
--with-mysqld-ldflags=-all-static

• If you are using gcc and don't have libg++ or libstdc++ installed, you can tell configure to use gcc as your C++
compiler:

shell> CC=gcc CXX=gcc ./configure

When you use gcc as your C++ compiler, it does not attempt to link in libg++ or libstdc++. This may be a good thing to
do even if you have those libraries installed. Some versions of them have caused strange problems for MySQL users in the past.

The following list indicates some compilers and environment variable settings that are commonly used with each one.

• gcc 2.7.2:

CC=gcc CXX=gcc CXXFLAGS="-O3 -felide-constructors"

• gcc 2.95.2:

CFLAGS="-O3 -mpentiumpro" CXX=gcc CXXFLAGS="-O3 -mpentiumpro \
-felide-constructors -fno-exceptions -fno-rtti"

• pgcc 2.90.29 or newer:

CFLAGS="-O3 -mpentiumpro -mstack-align-double" CXX=gcc \
CXXFLAGS="-O3 -mpentiumpro -mstack-align-double \
-felide-constructors -fno-exceptions -fno-rtti"

In most cases, you can get a reasonably optimized MySQL binary by using the options from the preceding list and adding the
following options to the configure line:

--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static

The full configure line would, in other words, be something like the following for all recent gcc versions:

CFLAGS="-O3 -mpentiumpro" CXX=gcc CXXFLAGS="-O3 -mpentiumpro \
-felide-constructors -fno-exceptions -fno-rtti" ./configure \
--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static

The binaries we provide on the MySQL Web site at http://dev.mysql.com/downloads/ are all compiled with full optimization
and should be perfect for most users. See Section 1.2.4, “MySQL Binaries Compiled by Sun Microsystems, Inc.”. There are
some configuration settings you can tweak to build an even faster binary, but these are only for advanced users. See How Com-
piling and Linking Affects the Speed of MySQL.

If the build fails and produces errors about your compiler or linker not being able to create the shared library libmysqlcli-
ent.so.N (where N is a version number), you can work around this problem by giving the --disable-shared option to
configure. In this case, configure does not build a shared libmysqlclient.so.N library.

• By default, MySQL uses the latin1 (cp1252 West European) character set. To change the default set, use the -
-with-charset option:

shell> ./configure --with-charset=CHARSET

CHARSET may be one of binary, armscii8, ascii, big5, cp1250, cp1251, cp1256, cp1257, cp850, cp852,
cp866, cp932, dec8, eucjpms, euckr, gb2312, gbk, geostd8, greek, hebrew, hp8, keybcs2, koi8r, koi8u,
latin1, latin2, latin5, latin7, macce, macroman, sjis, swe7, tis620, ucs2, ujis, utf8, utf8mb3,
utf16, utf32. See The Character Set Used for Data and Sorting. (Additional character sets might be available. Check the
output from ./configure --help for the current list.)

The default collation may also be specified. MySQL uses the latin1_swedish_ci collation by default. To change this, use
the --with-collation option:

shell> ./configure --with-collation=COLLATION

MySQL Installation Using a Source Distribution

61

http://dev.mysql.com/doc/refman/6.0/en/administration-issues.html#problems-with-mysql-sock
http://dev.mysql.com/downloads/
http://dev.mysql.com/doc/refman/6.0/en/compile-and-link-options.html
http://dev.mysql.com/doc/refman/6.0/en/compile-and-link-options.html
http://dev.mysql.com/doc/refman/6.0/en/charset-configuration.html

To change both the character set and the collation, use both the --with-charset and --with-collation options. The
collation must be a legal collation for the character set. (Use the SHOW COLLATION statement to determine which collations
are available for each character set.)

Warning

If you change character sets after having created any tables, you must run myisamchk -r -q -
-set-collation=collation_name on every MyISAM table. Your indexes may be sorted incorrectly other-
wise. This can happen if you install MySQL, create some tables, and then reconfigure MySQL to use a different char-
acter set and reinstall it.

With the configure option --with-extra-charsets=LIST, you can define which additional character sets should be
compiled into the server. LIST is one of the following:

• A list of character set names separated by spaces

• complex to include all character sets that can't be dynamically loaded

• all to include all character sets into the binaries

Clients that want to convert characters between the server and the client should use the SET NAMES statement. See Session
System Variables, and Connection Character Sets and Collations.

• To configure MySQL with debugging code, use the --with-debug option:

shell> ./configure --with-debug

This causes a safe memory allocator to be included that can find some errors and that provides output about what is happening.
See MySQL Internals: Porting.

Using --with-debug to configure MySQL with debugging support enables you to use the -
-debug="d,parser_debug" option when you start the server. This causes the Bison parser that is used to process SQL
statements to dump a parser trace to the server's standard error output. Typically, this output is written to the error log.

• To cause the Debug Sync facility to be compiled into the server, use the --enable-debug-sync option. This facility is
used for testing and debugging. When compiled in, Debug Sync is disabled by default. To enable it, start mysqld with the -
-debug-sync-timeout=N option, where N is a timeout value greater than 0. (The default value is 0, which disables Debug
Sync.) N becomes the default timeout for individual synchronization points.

Debug Sync is also compiled in if you configure with the --with-debug option (which implies
--enable-debug-sync), unless you also use the --disable-debug-sync option.

For a description of the Debug Sync facility and how to use synchronization points, see MySQL Internals: Test
Synchronization.

The --enable-debug-sync and --disable-debug-sync options were added in MySQL 6.0.6.

• The --enable-dtrace option causes support for DTrace probes to be included. Use the --disable-dtrace to disable
DTrace probe support.

The --enable-dtrace and --disable-dtrace options were added in MySQL 6.0.4.

• If your client programs are using threads, you must compile a thread-safe version of the MySQL client library with the -
-enable-thread-safe-client configure option. This creates a libmysqlclient_r library with which you should
link your threaded applications. See How to Make a Threaded Client.

• Some features require that the server be built with compression library support, such as the COMPRESS() and UNCOM-
PRESS() functions, compression of the client/server protocol, and compression by BACKUP DATABASE. The -
-with-zlib-dir=no|bundled|DIR option provides control for compression library support. The value no explicitly
disables compression support. bundled causes the zlib library bundled in the MySQL sources to be used. A DIR path name
specifies where to find the compression library sources.

• It is possible to build MySQL with large table support using the --with-big-tables option.

This option causes the variables that store table row counts to be declared as unsigned long long rather than unsigned
long. This enables tables to hold up to approximately 1.844E+19 ((232)2) rows rather than 232 (~4.295E+09) rows. Previously
it was necessary to pass -DBIG_TABLES to the compiler manually in order to enable this feature.

• Run configure with the --disable-grant-options option to cause the --bootstrap, -

MySQL Installation Using a Source Distribution

62

http://dev.mysql.com/doc/refman/6.0/en/show-collation.html
http://dev.mysql.com/doc/refman/6.0/en/server-session-variables.html
http://dev.mysql.com/doc/refman/6.0/en/server-session-variables.html
http://dev.mysql.com/doc/refman/6.0/en/charset-connection.html
http://forge.mysql.com/wiki/MySQL_Internals_Porting
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_debug
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_debug
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_debug-sync-timeout
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_debug-sync-timeout
http://forge.mysql.com/wiki/MySQL_Internals_Test_Synchronization
http://dev.mysql.com/doc/refman/6.0/en/threaded-clients.html
http://dev.mysql.com/doc/refman/6.0/en/encryption-functions.html#function_compress
http://dev.mysql.com/doc/refman/6.0/en/encryption-functions.html#function_uncompress
http://dev.mysql.com/doc/refman/6.0/en/encryption-functions.html#function_uncompress
http://dev.mysql.com/doc/refman/6.0/en/backup-database.html
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_bootstrap

-skip-grant-tables, and --init-file options for mysqld to be disabled. For Windows, the configure.js
script recognizes the DISABLE_GRANT_OPTIONS flag, which has the same effect.

• As of MySQL 6.0.4, client connections can be managed by a fix-size pool of threads rather than allocating one thread per con-
nection. Thread pooling is based on the libevent library. To build a server that includes the thread-pool capability, configure
MySQL using the --with-libevent option. The --without-libevent option excludes the libevent code. For in-
formation about choosing which thread model the server uses, see How MySQL Uses Threads for Client Connections.

• This option allows MySQL Community Server features to be enabled. Additional options may be required for individual fea-
tures, such as --enable-profiling to enable statement profiling. This option was added in MySQL 6.0.5. It is enabled by
default; to disable it, use --disable-community-features.

• When given with --enable-community-features, the --enable-profiling option enables the statement profil-
ing capability exposed by the SHOW PROFILE and SHOW PROFILES statements. (See SHOW PROFILES Syntax.) This op-
tion was added in MySQL 6.0.5. It is enabled by default; to disable it, use --disable-profiling.

• See Chapter 13, Operating System-Specific Notes, for options that pertain to particular operating systems.

• See Using SSL Connections, for options that pertain to configuring MySQL to support secure (encrypted) connections.

• Several configure options apply to plugin selection and building:

--with-plugins=PLUGIN[,PLUGIN]...
--with-plugins=GROUP
--with-plugin-PLUGIN
--without-plugin-PLUGIN

PLUGIN is an individual plugin name such as csv or archive.

As shorthand, GROUP is a configuration group name such as none (select no plugins) or all (select all plugins).

You can build a plugin as static (compiled into the server) or dynamic (built as a dynamic library that must be installed using
the INSTALL PLUGIN statement before it can be used). Some plugins might not support static or dynamic build.

configure --help shows the following information pertaining to plugins:

• The plugin-related options

• The names of all available plugins

• For each plugin, a description of its purpose, which build types it supports (static or dynamic), and which plugin groups it is
a part of.

--with-plugins can take a list of one or more plugin names separated by commas, or a plugin group name. The named
plugins are configured to be built as static plugins.

--with-plugin-PLUGIN configures the given plugin to be built as a static plugin.

--without-plugin-PLUGIN disables the given plugin from being built.

If a plugin is named both with a --with and --without option, the result is undefined.

For any plugin that is not explicitly selected or disabled, it is selected to be built dynamically if it supports dynamic build, and
not built if it does not support dynamic build. (Thus, in the case that no plugin options are given, all plugins that support dy-
namic build are selected to be built as dynamic plugins. Plugins that do not support dynamic build are not built.)

10.3. Installing from the Development Source Tree
Caution

You should read this section only if you are interested in helping us test our new code. If you just want to get MySQL
up and running on your system, you should use a standard release distribution (either a binary or source distribution).

To obtain the most recent development source tree, you first need to download and install Bazaar. You can obtain Bazaar from the
Bazaar VCS Website. Bazaar is supported by any platform that supports Python, and is therefore compatible with any Linux, Unix,
Windows or Mac OS X host. Instructions for downloading and installing Bazaar on the different platforms are available on the
Bazaar website.

All MySQL projects are hosted on Launchpad. MySQL projects, including MySQL server, MySQL Workbench and others are
available from the Sun/MySQL Engineering page. For the repositories related only to MySQL server, see the MySQL Server page.

MySQL Installation Using a Source Distribution

63

http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_skip-grant-tables
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_init-file
http://dev.mysql.com/doc/refman/6.0/en/connection-threads.html
http://dev.mysql.com/doc/refman/6.0/en/show-profile.html
http://dev.mysql.com/doc/refman/6.0/en/show-profiles.html
http://dev.mysql.com/doc/refman/6.0/en/show-profiles.html
http://dev.mysql.com/doc/refman/6.0/en/secure-using-ssl.html
http://dev.mysql.com/doc/refman/6.0/en/install-plugin.html
http://bazaar-vcs.org
http://launchpad.net/
http://launchpad.net/~mysql
http://launchpad.net/mysql-server

To build under Unix/Linux, you must have the following tools installed:

• GNU make, available from http://www.gnu.org/software/make/. Although some platforms come with their own make imple-
mentations, it is highly recommended that you use GNU make. It may already be available on your system as gmake.

• autoconf 2.58 (or newer), available from http://www.gnu.org/software/autoconf/.

• automake 1.8.1, available from http://www.gnu.org/software/automake/.

• libtool 1.5, available from http://www.gnu.org/software/libtool/.

• m4, available from http://www.gnu.org/software/m4/.

• bison, available from http://www.gnu.org/software/bison/. You should use the latest version of bison where possible. Version
1.75 and version 2.1 are known to work. There have been reported problems with bison 1.875. If you experience problems,
upgrade to a later, rather than earlier, version. Versions of bison older than 1.75 may report this error:

sql_yacc.yy:#####: fatal error: maximum table size (32767) exceeded

The maximum table size is not actually exceeded; the error is caused by bugs in older versions of bison.

To build under Windows you will need a copy of Microsoft Visual C++ 2005 Express Edition, Visual Studio .Net 2003 (7.1), or
Visual Studio 2005 (8.0) compiler system.

Once you have the necessary tools installed, you first need to create a local branch of the MySQL source code on your machine:

1. To obtain a copy of the MySQL source code, you must create a new Bazaar branch. If you do not already have a Bazaar repos-
itory directory set up, you need to initialize a new directory:

shell> mkdir mysql-server
shell> bzr init-repo --trees mysql-server

Once you have an initialized directory, you can branch from the public MySQL server repositories. To create a branch of a
specific version:

shell> cd mysql-server
shell> bzr branch lp:mysql-server/6.0 mysql-6.0

The initial download will take some time to complete, depending on the speed of your connection. Please be patient. Once you
have downloaded the first tree, additional trees should take significantly less time to download.

When building from the Bazaar branch, you may want to create a copy of your active branch so that you can make configura-
tion and other changes without affecting the original branch contents. You can achieve this by branching from the original
branch:

shell> bzr branch mysql-6.0 mysql-6.0-build

Once you have the local branch, you can start to build MySQL server from the source code. On Windows, the build process is dif-
ferent from Unix/Linux. To continue building MySQL on Windows, see Section 10.6, “Installing MySQL from Source on Win-
dows”.

On Unix/Linux you need to use the autoconf system to create the configure script so that you can configure the build envir-
onment before building.

1. The following example shows the typical commands required to configure a source tree. The first cd command changes loca-
tion into the top-level directory of the tree; replace mysql-6.0 with the appropriate directory name.

shell> cd mysql-6.0
shell> autoreconf --force --install
shell> ./configure # Add your favorite options here
shell> make

Or you can use BUILD/autorun.sh as a shortcut for the following sequence of commands:

shell> aclocal; autoheader
shell> libtoolize --automake --force
shell> automake --force --add-missing; autoconf

MySQL Installation Using a Source Distribution

64

http://www.gnu.org/software/make/
http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/
http://www.gnu.org/software/libtool/
http://www.gnu.org/software/m4/
http://www.gnu.org/software/bison/

The command line that changes directory into the storage/innobase directory is used to configure the InnoDB storage
engine. You can omit this lines if you do not require InnoDB support.

If you get some strange errors during this stage, verify that you have the correct version of the libtool installed.

A collection of our standard configuration scripts is located in the BUILD/ subdirectory. For example, you may find it more
convenient to use the BUILD/compile-pentium-debug script than the preceding set of shell commands. To compile on
a different architecture, modify the script by removing flags that are Pentium-specific, or use another script that may be more
appropriate. These scripts are provided on an “as-is” basis. They are not officially maintained and their contents may change
from release to release.

2. When the build is done, run make install. Be careful with this on a production machine; the command may overwrite
your live release installation. If you have another installation of MySQL, we recommend that you run ./configure with
different values for the --prefix, --with-tcp-port, and --with-unix-socket-path options than those used for
your production server.

3. Play hard with your new installation and try to make the new features crash. Start by running make test. See MySQL Test
Suite.

4. If you have gotten to the make stage, but the distribution does not compile, please enter the problem into our bugs database
using the instructions given in How to Report Bugs or Problems. If you have installed the latest versions of the required GNU
tools, and they crash trying to process our configuration files, please report that also. However, if you execute aclocal and
get a command not found error or a similar problem, do not report it. Instead, make sure that all the necessary tools are
installed and that your PATH variable is set correctly so that your shell can find them.

5. After initially copying the repository with bzr to obtain the source tree, you should use pull option to periodically update
your local copy. To do this any time after you have set up the repository, use this command:

shell> bzr pull

6. You can examine the changeset comments for the tree by using the log option to bzr:

shell> bzr log

You can also browse changesets, comments, and source code online. To browse this information for MySQL 6.0, go to ht-
tp://launchpad.net/mysql-server/.

If you see diffs or code that you have a question about, do not hesitate to send email to the MySQL internals mailing list.
See MySQL Mailing Lists. Also, if you think you have a better idea on how to do something, send an email message to the list
with a patch.

10.4. Dealing with Problems Compiling MySQL
All MySQL programs compile cleanly for us with no warnings on Solaris or Linux using gcc. On other systems, warnings may oc-
cur due to differences in system include files. See Section 10.5, “MIT-pthreads Notes”, for warnings that may occur when using
MIT-pthreads. For other problems, check the following list.

The solution to many problems involves reconfiguring. If you do need to reconfigure, take note of the following:

• If configure is run after it has previously been run, it may use information that was gathered during its previous invocation.
This information is stored in config.cache. When configure starts up, it looks for that file and reads its contents if it ex-
ists, on the assumption that the information is still correct. That assumption is invalid when you reconfigure.

• Each time you run configure, you must run make again to recompile. However, you may want to remove old object files
from previous builds first because they were compiled using different configuration options.

To prevent old configuration information or object files from being used, run these commands before re-running configure:

shell> rm config.cache
shell> make clean

Alternatively, you can run make distclean.

The following list describes some of the problems when compiling MySQL that have been found to occur most often:

MySQL Installation Using a Source Distribution

65

http://dev.mysql.com/doc/refman/6.0/en/mysql-test-suite.html
http://dev.mysql.com/doc/refman/6.0/en/mysql-test-suite.html
http://dev.mysql.com/doc/refman/5.1/en/bug-reports.html
http://launchpad.net/mysql-server/
http://launchpad.net/mysql-server/
http://dev.mysql.com/doc/refman/5.1/en/mailing-lists.html

• If you get errors such as the ones shown here when compiling sql_yacc.cc, you probably have run out of memory or swap
space:

Internal compiler error: program cc1plus got fatal signal 11
Out of virtual memory
Virtual memory exhausted

The problem is that gcc requires a huge amount of memory to compile sql_yacc.cc with inline functions. Try running
configure with the --with-low-memory option:

shell> ./configure --with-low-memory

This option causes -fno-inline to be added to the compile line if you are using gcc and -O0 if you are using something
else. You should try the --with-low-memory option even if you have so much memory and swap space that you think you
can't possibly have run out. This problem has been observed to occur even on systems with generous hardware configurations,
and the --with-low-memory option usually fixes it.

• By default, configure picks c++ as the compiler name and GNU c++ links with -lg++. If you are using gcc, that behavi-
or can cause problems during configuration such as this:

configure: error: installation or configuration problem:
C++ compiler cannot create executables.

You might also observe problems during compilation related to g++, libg++, or libstdc++.

One cause of these problems is that you may not have g++, or you may have g++ but not libg++, or libstdc++. Take a
look at the config.log file. It should contain the exact reason why your C++ compiler didn't work. To work around these
problems, you can use gcc as your C++ compiler. Try setting the environment variable CXX to "gcc -O3". For example:

shell> CXX="gcc -O3" ./configure

This works because gcc compiles C++ source files as well as g++ does, but does not link in libg++ or libstdc++ by de-
fault.

Another way to fix these problems is to install g++, libg++, and libstdc++. However, we recommend that you not use
libg++ or libstdc++ with MySQL because this only increases the binary size of mysqld without providing any benefits.
Some versions of these libraries have also caused strange problems for MySQL users in the past.

• If your compile fails with errors such as any of the following, you must upgrade your version of make to GNU make:

making all in mit-pthreads
make: Fatal error in reader: Makefile, line 18:
Badly formed macro assignment

Or:

make: file `Makefile' line 18: Must be a separator (:

Or:

pthread.h: No such file or directory

Solaris and FreeBSD are known to have troublesome make programs.

GNU make 3.75 is known to work.

• If you want to define flags to be used by your C or C++ compilers, do so by adding the flags to the CFLAGS and CXXFLAGS
environment variables. You can also specify the compiler names this way using CC and CXX. For example:

shell> CC=gcc
shell> CFLAGS=-O3
shell> CXX=gcc
shell> CXXFLAGS=-O3
shell> export CC CFLAGS CXX CXXFLAGS

See Section 1.2.4, “MySQL Binaries Compiled by Sun Microsystems, Inc.”, for a list of flag definitions that have been found to
be useful on various systems.

• If you get errors such as those shown here when compiling mysqld, configure did not correctly detect the type of the last
argument to accept(), getsockname(), or getpeername():

MySQL Installation Using a Source Distribution

66

cxx: Error: mysqld.cc, line 645: In this statement, the referenced
type of the pointer value ''length'' is ''unsigned long'',
which is not compatible with ''int''.

new_sock = accept(sock, (struct sockaddr *)&cAddr, &length);

To fix this, edit the config.h file (which is generated by configure). Look for these lines:

/* Define as the base type of the last arg to accept */
#define SOCKET_SIZE_TYPE XXX

Change XXX to size_t or int, depending on your operating system. (You must do this each time you run configure be-
cause configure regenerates config.h.)

• The sql_yacc.cc file is generated from sql_yacc.yy. Normally, the build process does not need to create
sql_yacc.cc because MySQL comes with a pre-generated copy. However, if you do need to re-create it, you might en-
counter this error:

"sql_yacc.yy", line xxx fatal: default action causes potential...

This is a sign that your version of yacc is deficient. You probably need to install bison (the GNU version of yacc) and use
that instead.

• On Debian Linux 3.0, you need to install gawk instead of the default mawk.

• If you need to debug mysqld or a MySQL client, run configure with the --with-debug option, and then recompile and
link your clients with the new client library. See MySQL Internals: Porting.

• If you get a compilation error on Linux (for example, SuSE Linux 8.1 or Red Hat Linux 7.3) similar to the following one, you
probably do not have g++ installed:

libmysql.c:1329: warning: passing arg 5 of `gethostbyname_r' from
incompatible pointer type
libmysql.c:1329: too few arguments to function `gethostbyname_r'
libmysql.c:1329: warning: assignment makes pointer from integer
without a cast
make[2]: *** [libmysql.lo] Error 1

By default, the configure script attempts to determine the correct number of arguments by using g++ (the GNU C++ com-
piler). This test yields incorrect results if g++ is not installed. There are two ways to work around this problem:

• Make sure that the GNU C++ g++ is installed. On some Linux distributions, the required package is called gpp; on others,
it is named gcc-c++.

• Use gcc as your C++ compiler by setting the CXX environment variable to gcc:

export CXX="gcc"

You must run configure again after making either of those changes.

10.5. MIT-pthreads Notes
This section describes some of the issues involved in using MIT-pthreads.

On Linux, you should not use MIT-pthreads. Use the installed LinuxThreads implementation instead. See Section 13.1, “Linux
Notes”.

If your system does not provide native thread support, you should build MySQL using the MIT-pthreads package. This includes
older FreeBSD systems, SunOS 4.x, Solaris 2.4 and earlier, and some others. See Section 1.1, “Operating Systems Supported by
MySQL Community Server”.

MIT-pthreads is not part of the MySQL 6.0 source distribution. If you require this package, you need to download it separately
from http://dev.mysql.com/Downloads/Contrib/pthreads-1_60_beta6-mysql.tar.gz

After downloading, extract this source archive into the top level of the MySQL source directory. It creates a new subdirectory
named mit-pthreads.

• On most systems, you can force MIT-pthreads to be used by running configure with the --with-mit-threads option:

MySQL Installation Using a Source Distribution

67

http://forge.mysql.com/wiki/MySQL_Internals_Porting
http://dev.mysql.com/Downloads/Contrib/pthreads-1_60_beta6-mysql.tar.gz

shell> ./configure --with-mit-threads

Building in a non-source directory is not supported when using MIT-pthreads because we want to minimize our changes to this
code.

• The checks that determine whether to use MIT-pthreads occur only during the part of the configuration process that deals with
the server code. If you have configured the distribution using --without-server to build only the client code, clients do
not know whether MIT-pthreads is being used and use Unix socket file connections by default. Because Unix socket files do
not work under MIT-pthreads on some platforms, this means you need to use -h or --host with a value other than local-
host when you run client programs.

• When MySQL is compiled using MIT-pthreads, system locking is disabled by default for performance reasons. You can tell the
server to use system locking with the --external-locking option. This is needed only if you want to be able to run two
MySQL servers against the same data files, but that is not recommended, anyway.

• Sometimes the pthread bind() command fails to bind to a socket without any error message (at least on Solaris). The result is
that all connections to the server fail. For example:

shell> mysqladmin version
mysqladmin: connect to server at '' failed;
error: 'Can't connect to mysql server on localhost (146)'

The solution to this problem is to kill the mysqld server and restart it. This has happened to us only when we have forcibly
stopped the server and restarted it immediately.

• With MIT-pthreads, the sleep() system call isn't interruptible with SIGINT (break). This is noticeable only when you run
mysqladmin --sleep. You must wait for the sleep() call to terminate before the interrupt is served and the process
stops.

• When linking, you might receive warning messages like these (at least on Solaris); they can be ignored:

ld: warning: symbol `_iob' has differing sizes:
(file /my/local/pthreads/lib/libpthread.a(findfp.o) value=0x4;

file /usr/lib/libc.so value=0x140);
/my/local/pthreads/lib/libpthread.a(findfp.o) definition taken

ld: warning: symbol `__iob' has differing sizes:
(file /my/local/pthreads/lib/libpthread.a(findfp.o) value=0x4;

file /usr/lib/libc.so value=0x140);
/my/local/pthreads/lib/libpthread.a(findfp.o) definition taken

• Some other warnings also can be ignored:

implicit declaration of function `int strtoll(...)'
implicit declaration of function `int strtoul(...)'

• We have not been able to make readline work with MIT-pthreads. (This is not necessary, but may be of interest to some.)

10.6. Installing MySQL from Source on Windows
These instructions describe how to build binaries from source for MySQL 6.0 on Windows. Instructions are provided for building
binaries from a standard source distribution or from the Bazaar tree that contains the latest development source.

Note

The instructions here are strictly for users who want to test MySQL on Microsoft Windows from the latest source dis-
tribution or from the Bazaar tree. For production use, we do not advise using a MySQL server built by yourself from
source. Normally, it is best to use precompiled binary distributions of MySQL that are built specifically for optimal
performance on Windows by Sun Microsystems, Inc. Instructions for installing binary distributions are available in
Chapter 3, Installing MySQL on Windows.

To build MySQL on Windows from source, you must satisfy the following system, compiler, and resource requirements:

• Windows 2000, Windows XP, or newer version.

Windows Vista is supported when using Visual Studio 2005 provided you have installed the following updates:

• Microsoft Visual Studio 2005 Professional Edition - ENU Service Pack 1 (KB926601)

MySQL Installation Using a Source Distribution

68

http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_external-locking
http://support.microsoft.com/?kbid=926601

• Security Update for Microsoft Visual Studio 2005 Professional Edition - ENU (KB937061)

• Update for Microsoft Visual Studio 2005 Professional Edition - ENU (KB932232)

• CMake, which can be downloaded from http://www.cmake.org. After installing, modify your path to include the cmake bin-
ary.

• Microsoft Visual C++ 2005 Express Edition, Visual Studio .Net 2003 (7.1), or Visual Studio 2005 (8.0) compiler system.

• If you are using Visual C++ 2005 Express Edition, you must also install an appropriate Platform SDK. More information and
links to downloads for various Windows platforms is available from ht-
tp://www.microsoft.com/downloads/details.aspx?familyid=0baf2b35-c656-4969-ace8-e4c0c0716adb.

• If you are compiling from a Bazaar tree or making changes to the parser, you need bison for Windows, which can be down-
loaded from http://gnuwin32.sourceforge.net/packages/bison.htm. Download the package labeled “Complete package, exclud-
ing sources”. After installing the package, modify your path to include the bison binary and ensure that this binary is access-
ible from Visual Studio.

• Cygwin might be necessary if you want to run the test script or package the compiled binaries and support files into a Zip
archive. (Cygwin is needed only to test or package the distribution, not to build it.) Cygwin is available from http://cygwin.com.

• 3GB to 5GB of disk space.

The exact system requirements can be found here: http://msdn.microsoft.com/vstudio/Previous/2003/sysreqs/default.aspx and ht-
tp://msdn.microsoft.com/vstudio/products/sysreqs/default.aspx

You also need a MySQL source distribution for Windows, which can be obtained two ways:

• Obtain a source distribution packaged by Sun Microsystems, Inc. These are available from http://dev.mysql.com/downloads/.

• Package a source distribution yourself from the latest Bazaar developer source tree. For instructions on pulling the latest source
files, see Section 10.3, “Installing from the Development Source Tree”.

If you find something not working as expected, or you have suggestions about ways to improve the current build process on Win-
dows, please send a message to the win32 mailing list. See MySQL Mailing Lists.

10.6.1. Building MySQL from Source Using CMake and Visual Studio
You can build MySQL on Windows by using a combination of cmake and Microsoft Visual Studio .NET 2003 (7.1), Microsoft
Visual Studio 2005 (8.0) or Microsoft Visual C++ 2005 Express Edition. You must have the appropriate Microsoft Platform SDK
installed.

Note

To compile from the source code on Windows you must use the standard source distribution (for example,
mysql-5.0.45.tar.gz). You build from the same distribution as used to build MySQL on Unix, Linux and oth-
er platforms. Do not use the Windows Source distributions as they do not contain the necessary configuration script
and other files.

Follow this procedure to build MySQL:

1. If you are installing from a packaged source distribution, create a work directory (for example, C:\workdir), and unpack
the source distribution there using WinZip or another Windows tool that can read .zip files. This directory is the work dir-
ectory in the following instructions.

2. If you are installing from a Bazaar tree, the root directory of that tree is the work directory in the following instructions.

3. Using a command shell, navigate to the work directory and run the following command:

C:\workdir>win\configure.js options

If you have associated the .js file extension with an application such as a text editor, then you may need to use the following
command to force configure.js to be executed as a script:

C:\workdir>cscript win\configure.js options

MySQL Installation Using a Source Distribution

69

http://support.microsoft.com/?kbid=937061
http://support.microsoft.com/?kbid=932232
http://www.cmake.org
http://www.microsoft.com/downloads/details.aspx?familyid=0baf2b35-c656-4969-ace8-e4c0c0716adb
http://www.microsoft.com/downloads/details.aspx?familyid=0baf2b35-c656-4969-ace8-e4c0c0716adb
http://gnuwin32.sourceforge.net/packages/bison.htm
http://cygwin.com
http://msdn.microsoft.com/vstudio/Previous/2003/sysreqs/default.aspx
http://msdn.microsoft.com/vstudio/products/sysreqs/default.aspx
http://msdn.microsoft.com/vstudio/products/sysreqs/default.aspx
http://dev.mysql.com/downloads/
http://dev.mysql.com/doc/refman/5.1/en/mailing-lists.html

These options are available for configure.js:

• WITH_INNOBASE_STORAGE_ENGINE: Enable the InnoDB storage engine.

• WITH_PARTITION_STORAGE_ENGINE: Enable user-defined partitioning.

• WITH_ARCHIVE_STORAGE_ENGINE: Enable the ARCHIVE storage engine.

• WITH_BLACKHOLE_STORAGE_ENGINE: Enable the BLACKHOLE storage engine.

• WITH_EXAMPLE_STORAGE_ENGINE: Enable the EXAMPLE storage engine.

• WITH_FEDERATED_STORAGE_ENGINE: Enable the FEDERATED storage engine.

• MYSQL_SERVER_SUFFIX=suffix: Server suffix, default none.

• COMPILATION_COMMENT=comment: Server comment, default "Source distribution".

• MYSQL_TCP_PORT=port: Server port, default 3306.

• DISABLE_GRANT_OPTIONS: Disables the --bootstrap, --skip-grant-tables, and --init-file options
for mysqld.

For example (type the command on one line):

C:\workdir>win\configure.js WITH_INNOBASE_STORAGE_ENGINE
WITH_PARTITION_STORAGE_ENGINE MYSQL_SERVER_SUFFIX=-pro

4. From the work directory, execute the win\build-vs8.bat or win\build-vs71.bat file, depending on the version of
Visual Studio you have installed. The script invokes CMake, which generates the mysql.sln solution file.

You can also use win\build-vs8_x64.bat to build the 64-bit version of MySQL. However, you cannot build the 64-bit
version with Visual Studio Express Edition. You must use Visual Studio 2005 (8.0) or higher.

5. From the work directory, open the generated mysql.sln file with Visual Studio and select the proper configuration using
the CONFIGURATION menu. The menu provides Debug, Release, RelwithDebInfo, MinRelInfo options. Then select SOLUTION
> Build to build the solution.

Remember the configuration that you use in this step. It is important later when you run the test script because that script
needs to know which configuration you used.

6. Test the server. The server built using the preceding instructions expects that the MySQL base directory and data directory are
C:\mysql and C:\mysql\data by default. If you want to test your server using the source tree root directory and its data
directory as the base directory and data directory, you need to tell the server their path names. You can either do this on the
command line with the --basedir and --datadir options, or by placing appropriate options in an option file. (See Using
Option Files.) If you have an existing data directory elsewhere that you want to use, you can specify its path name instead.

When the server is running in standalone fashion or as a service based on your configuration, try to connect to it from the
mysql interactive command-line utility.

You can also run the standard test script, mysql-test-run.pl. This script is written in Perl, so you'll need either Cygwin
or ActiveState Perl to run it. You may also need to install the modules required by the script. To run the test script, change loc-
ation into the mysql-test directory under the work directory, set the MTR_VS_CONFIG environment variable to the con-
figuration you selected earlier (or use the --vs-config option), and invoke mysql-test-run.pl. For example (using
Cygwin and the bash shell):

shell> cd mysql-test
shell> export MTS_VS_CONFIG=debug
shell> ./mysql-test-run.pl --force --timer
shell> ./mysql-test-run.pl --force --timer --ps-protocol

When you are satisfied that the programs you have built are working correctly, stop the server. Now you can install the distribution.
One way to do this is to use the make_win_bin_dist script in the scripts directory of the MySQL source distribution (see
make_win_bin_dist). This is a shell script, so you must have Cygwin installed if you want to use it. It creates a Zip archive of
the built executables and support files that you can unpack in the location at which you want to install MySQL.

It is also possible to install MySQL by copying directories and files directly:

1. Create the directories where you want to install MySQL. For example, to install into C:\mysql, use these commands:

MySQL Installation Using a Source Distribution

70

http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_bootstrap
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_skip-grant-tables
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_init-file
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_basedir
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_datadir
http://dev.mysql.com/doc/refman/6.0/en/option-files.html
http://dev.mysql.com/doc/refman/6.0/en/option-files.html
http://dev.mysql.com/doc/refman/6.0/en/make-win-bin-dist.html

C:\> mkdir C:\mysql
C:\> mkdir C:\mysql\bin
C:\> mkdir C:\mysql\data
C:\> mkdir C:\mysql\share
C:\> mkdir C:\mysql\scripts

If you want to compile other clients and link them to MySQL, you should also create several additional directories:

C:\> mkdir C:\mysql\include
C:\> mkdir C:\mysql\lib
C:\> mkdir C:\mysql\lib\debug
C:\> mkdir C:\mysql\lib\opt

If you want to benchmark MySQL, create this directory:

C:\> mkdir C:\mysql\sql-bench

Benchmarking requires Perl support. See Chapter 15, Perl Installation Notes.

2. From the work directory, copy into the C:\mysql directory the following directories:

C:\> cd \workdir
C:\workdir> copy client_release*.exe C:\mysql\bin
C:\workdir> copy client_debug\mysqld.exe C:\mysql\bin\mysqld-debug.exe
C:\workdir> xcopy scripts*.* C:\mysql\scripts /E
C:\workdir> xcopy share*.* C:\mysql\share /E

If you want to compile other clients and link them to MySQL, you should also copy several libraries and header files:

C:\workdir> copy lib_debug\mysqlclient.lib C:\mysql\lib\debug
C:\workdir> copy lib_debug\libmysql.* C:\mysql\lib\debug
C:\workdir> copy lib_debug\zlib.* C:\mysql\lib\debug
C:\workdir> copy lib_release\mysqlclient.lib C:\mysql\lib\opt
C:\workdir> copy lib_release\libmysql.* C:\mysql\lib\opt
C:\workdir> copy lib_release\zlib.* C:\mysql\lib\opt
C:\workdir> copy include*.h C:\mysql\include
C:\workdir> copy libmysql\libmysql.def C:\mysql\include

If you want to benchmark MySQL, you should also do this:

C:\workdir> xcopy sql-bench*.* C:\mysql\bench /E

After installation, set up and start the server in the same way as for binary Windows distributions. See Chapter 3, Installing MySQL
on Windows.

10.7. Compiling MySQL Clients on Windows
In your source files, you should include my_global.h before mysql.h:

#include <my_global.h>
#include <mysql.h>

my_global.h includes any other files needed for Windows compatibility (such as windows.h) if you compile your program
on Windows.

You can either link your code with the dynamic libmysql.lib library, which is just a wrapper to load in libmysql.dll on
demand, or link with the static mysqlclient.lib library.

The MySQL client libraries are compiled as threaded libraries, so you should also compile your code to be multi-threaded.

MySQL Installation Using a Source Distribution

71

Chapter 11. Post-Installation Setup and Testing
After installing MySQL, there are some issues that you should address. For example, on Unix, you should initialize the data direct-
ory and create the MySQL grant tables. On all platforms, an important security concern is that the initial accounts in the grant
tables have no passwords. You should assign passwords to prevent unauthorized access to the MySQL server. Optionally, you can
create time zone tables to enable recognition of named time zones.

The following sections include post-installation procedures that are specific to Windows systems and to Unix systems. Another
section, Section 11.2.3, “Starting and Troubleshooting the MySQL Server”, applies to all platforms; it describes what to do if you
have trouble getting the server to start. Section 11.3, “Securing the Initial MySQL Accounts”, also applies to all platforms. You
should follow its instructions to make sure that you have properly protected your MySQL accounts by assigning passwords to
them.

When you are ready to create additional user accounts, you can find information on the MySQL access control system and account
management in The MySQL Access Privilege System, and MySQL User Account Management.

11.1. Windows Post-Installation Procedures
On Windows, the data directory and the grant tables do not have to be created. MySQL Windows distributions include the grant
tables with a set of preinitialized accounts in the mysql database under the data directory. It is unnecessary to run the
mysql_install_db script that is used on Unix. Regarding passwords, if you installed MySQL using the Windows Installation
Wizard, you may have already assigned passwords to the accounts. (See Section 3.3, “Using the MySQL Installation Wizard”.)
Otherwise, use the password-assignment procedure given in Section 11.3, “Securing the Initial MySQL Accounts”.

Before setting up passwords, you might want to try running some client programs to make sure that you can connect to the server
and that it is operating properly. Make sure that the server is running (see Section 3.9, “Starting the Server for the First Time”), and
then issue the following commands to verify that you can retrieve information from the server. The output should be similar to
what is shown here:

C:\> C:\mysql\bin\mysqlshow
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| test |
+--------------------+
C:\> C:\mysql\bin\mysqlshow mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| db |
| event |
| func |
| general_log |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| host |
| plugin |
| proc |
| procs_priv |
| servers |
| slow_log |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+
C:\> C:\mysql\bin\mysql -e "SELECT Host,Db,User FROM db" mysql
+------+-------+------+
| host | db | user |
+------+-------+------+
| % | test% | |
+------+-------+------+

You may need to specify a different directory from the one shown; if you used the Windows Installation Wizard, then the default
directory is C:\Program Files\MySQL\MySQL Server 6.0, and the mysql and mysqlshow client programs are in
C:\Program Files\MySQL\MySQL Server 6.0\bin. See Section 3.3, “Using the MySQL Installation Wizard”, for
more information.

If you have already secured the initial MySQL accounts, you may need to use the -u and -p options to supply a user name and
password to the mysqlshow and mysql client programs; otherwise the programs may fail with an error, or you may not be able

72

http://dev.mysql.com/doc/refman/6.0/en/privilege-system.html
http://dev.mysql.com/doc/refman/6.0/en/user-account-management.html

to view all databases. For example, if you have assigned the password “secretpass” to the MySQL root account, then you can in-
voke mysqlshow and mysql as shown here:

C:\> C:\mysql\bin\mysqlshow -uroot -psecretpass
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| test |
+--------------------+
C:\> C:\mysql\bin\mysqlshow -uroot -psecretpass mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| db |
| event |
| func |
| general_log |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| host |
| plugin |
| proc |
| procs_priv |
| servers |
| slow_log |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+
C:\> C:\mysql\bin\mysql -uroot -psecretpass -e "SELECT Host,Db,User FROM db" mysql
+------+-------+------+
| host | db | user |
+------+-------+------+
| % | test% | |
+------+-------+------+

For more information about these programs, see mysqlshow, and mysql.

If you are running a version of Windows that supports services and you want the MySQL server to run automatically when Win-
dows starts, see Section 3.11, “Starting MySQL as a Windows Service”.

11.2. Unix Post-Installation Procedures
After installing MySQL on Unix, you need to initialize the grant tables, start the server, and make sure that the server works satis-
factorily. You may also wish to arrange for the server to be started and stopped automatically when your system starts and stops.
You should also assign passwords to the accounts in the grant tables.

On Unix, the grant tables are set up by the mysql_install_db program. For some installation methods, this program is run for
you automatically:

• If you install MySQL on Linux using RPM distributions, the server RPM runs mysql_install_db.

• If you install MySQL on Mac OS X using a PKG distribution, the installer runs mysql_install_db.

Otherwise, you'll need to run mysql_install_db yourself.

The following procedure describes how to initialize the grant tables (if that has not previously been done) and then start the server.
It also suggests some commands that you can use to test whether the server is accessible and working properly. For information
about starting and stopping the server automatically, see Section 11.2.2, “Starting and Stopping MySQL Automatically”.

After you complete the procedure and have the server running, you should assign passwords to the accounts created by
mysql_install_db. Instructions for doing so are given in Section 11.3, “Securing the Initial MySQL Accounts”.

In the examples shown here, the server runs under the user ID of the mysql login account. This assumes that such an account ex-
ists. Either create the account if it does not exist, or substitute the name of a different existing login account that you plan to use for
running the server.

1. Change location into the top-level directory of your MySQL installation, represented here by BASEDIR:

shell> cd BASEDIR

Post-Installation Setup and Testing

73

http://dev.mysql.com/doc/refman/6.0/en/mysqlimport.html#mysqlshow
http://dev.mysql.com/doc/refman/6.0/en/mysql.html

BASEDIR is likely to be something like /usr/local/mysql or /usr/local. The following steps assume that you are
located in this directory.

2. If necessary, run the mysql_install_db program to set up the initial MySQL grant tables containing the privileges that
determine how users are allowed to connect to the server. You'll need to do this if you used a distribution type for which the
installation procedure doesn't run the program for you.

Typically, mysql_install_db needs to be run only the first time you install MySQL, so you can skip this step if you are
upgrading an existing installation, However, mysql_install_db does not overwrite any existing privilege tables, so it
should be safe to run in any circumstances.

To initialize the grant tables, use one of the following commands, depending on whether mysql_install_db is located in
the bin or scripts directory:

shell> bin/mysql_install_db --user=mysql
shell> scripts/mysql_install_db --user=mysql

It might be necessary to specify other options such as --basedir or --datadir if mysql_install_db does not use
the correct locations for the installation directory or data directory. For example:

shell> bin/mysql_install_db --user=mysql \
--basedir=/opt/mysql/mysql \
--datadir=/opt/mysql/mysql/data

The mysql_install_db script creates the server's data directory. Under the data directory, it creates directories for the
mysql database that holds all database privileges and the test database that you can use to test MySQL. The script also cre-
ates privilege table entries for root and anonymous-user accounts. The accounts have no passwords initially. A description of
their initial privileges is given in Section 11.3, “Securing the Initial MySQL Accounts”. Briefly, these privileges allow the
MySQL root user to do anything, and allow anybody to create or use databases with a name of test or starting with
test_.

It is important to make sure that the database directories and files are owned by the mysql login account so that the server has
read and write access to them when you run it later. To ensure this, the --user option should be used as shown if you run
mysql_install_db as root. Otherwise, you should execute the script while logged in as mysql, in which case you can
omit the --user option from the command.

mysql_install_db creates several tables in the mysql database, including user, db, host, tables_priv,
columns_priv, func, and others. See The MySQL Access Privilege System, for a complete listing and description of
these tables.

If you don't want to have the test database, you can remove it with mysqladmin -u root drop test after starting
the server.

If you have trouble with mysql_install_db at this point, see Section 11.2.1, “Problems Running
mysql_install_db”.

3. Start the MySQL server:

shell> bin/mysqld_safe --user=mysql &

It is important that the MySQL server be run using an unprivileged (non-root) login account. To ensure this, the --user
option should be used as shown if you run mysqld_safe as system root. Otherwise, you should execute the script while
logged in to the system as mysql, in which case you can omit the --user option from the command.

Further instructions for running MySQL as an unprivileged user are given in How to Run MySQL as a Normal User.

If you neglected to create the grant tables before proceeding to this step, the following message appears in the error log file
when you start the server:

mysqld: Can't find file: 'host.frm'

If you have other problems starting the server, see Section 11.2.3, “Starting and Troubleshooting the MySQL Server”.

4. Use mysqladmin to verify that the server is running. The following commands provide simple tests to check whether the
server is up and responding to connections:

shell> bin/mysqladmin version
shell> bin/mysqladmin variables

Post-Installation Setup and Testing

74

http://dev.mysql.com/doc/refman/6.0/en/mysql-install-db.html#option_mysql_install_db_basedir
http://dev.mysql.com/doc/refman/6.0/en/mysql-install-db.html#option_mysql_install_db_datadir
http://dev.mysql.com/doc/refman/6.0/en/privilege-system.html
http://dev.mysql.com/doc/refman/6.0/en/mysqld-safe.html#option_mysqld_safe_user
http://dev.mysql.com/doc/refman/6.0/en/mysqld-safe.html#option_mysqld_safe_user
http://dev.mysql.com/doc/refman/6.0/en/changing-mysql-user.html

The output from mysqladmin version varies slightly depending on your platform and version of MySQL, but should be
similar to that shown here:

shell> bin/mysqladmin version
mysqladmin Ver 14.12 Distrib 6.0.12, for pc-linux-gnu on i686
...
Server version 6.0.12
Protocol version 10
Connection Localhost via UNIX socket
UNIX socket /var/lib/mysql/mysql.sock
Uptime: 14 days 5 hours 5 min 21 sec
Threads: 1 Questions: 366 Slow queries: 0
Opens: 0 Flush tables: 1 Open tables: 19
Queries per second avg: 0.000

To see what else you can do with mysqladmin, invoke it with the --help option.

5. Verify that you can shut down the server:

shell> bin/mysqladmin -u root shutdown

6. Verify that you can start the server again. Do this by using mysqld_safe or by invoking mysqld directly. For example:

shell> bin/mysqld_safe --user=mysql --log &

If mysqld_safe fails, see Section 11.2.3, “Starting and Troubleshooting the MySQL Server”.

7. Run some simple tests to verify that you can retrieve information from the server. The output should be similar to what is
shown here:

shell> bin/mysqlshow
+-----------+
| Databases |
+-----------+
| mysql |
| test |
+-----------+
shell> bin/mysqlshow mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| db |
| func |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| host |
| proc |
| procs_priv |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+
shell> bin/mysql -e "SELECT Host,Db,User FROM db" mysql
+------+--------+------+
| host | db | user |
+------+--------+------+
| % | test | |
| % | test_% | |
+------+--------+------+

8. There is a benchmark suite in the sql-bench directory (under the MySQL installation directory) that you can use to com-
pare how MySQL performs on different platforms. The benchmark suite is written in Perl. It requires the Perl DBI module that
provides a database-independent interface to the various databases, and some other additional Perl modules:

DBI
DBD::mysql
Data::Dumper
Data::ShowTable

These modules can be obtained from CPAN (http://www.cpan.org/). See also Section 15.1, “Installing Perl on Unix”.

The sql-bench/Results directory contains the results from many runs against different databases and platforms. To run
all tests, execute these commands:

Post-Installation Setup and Testing

75

http://dev.mysql.com/doc/refman/6.0/en/mysqladmin.html#option_mysqladmin_help
http://www.cpan.org/

shell> cd sql-bench
shell> perl run-all-tests

If you don't have the sql-bench directory, you probably installed MySQL using RPM files other than the source RPM.
(The source RPM includes the sql-bench benchmark directory.) In this case, you must first install the benchmark suite be-
fore you can use it. There are separate benchmark RPM files named mysql-bench-VERSION.i386.rpm that contain
benchmark code and data.

If you have a source distribution, there are also tests in its tests subdirectory that you can run. For example, to run
auto_increment.tst, execute this command from the top-level directory of your source distribution:

shell> mysql -vvf test < ./tests/auto_increment.tst

The expected result of the test can be found in the ./tests/auto_increment.res file.

9. At this point, you should have the server running. However, none of the initial MySQL accounts have a password, so you
should assign passwords using the instructions found in Section 11.3, “Securing the Initial MySQL Accounts”.

The MySQL 6.0 installation procedure creates time zone tables in the mysql database. However, you must populate the tables
manually using the instructions in MySQL Server Time Zone Support.

11.2.1. Problems Running mysql_install_db

The purpose of the mysql_install_db script is to generate new MySQL privilege tables. It does not overwrite existing
MySQL privilege tables, and it does not affect any other data.

If you want to re-create your privilege tables, first stop the mysqld server if it is running. Then rename the mysql directory under
the data directory to save it, and then run mysql_install_db. Suppose that your current directory is the MySQL installation
directory and that mysql_install_db is located in the bin directory and the data directory is named data. To rename the
mysql database and re-run mysql_install_db, use these commands.

shell> mv data/mysql data/mysql.old
shell> bin/mysql_install_db --user=mysql

When you run mysql_install_db, you might encounter the following problems:

• mysql_install_db fails to install the grant tables

You may find that mysql_install_db fails to install the grant tables and terminates after displaying the following mes-
sages:

Starting mysqld daemon with databases from XXXXXX
mysqld ended

In this case, you should examine the error log file very carefully. The log should be located in the directory XXXXXX named by
the error message and should indicate why mysqld didn't start. If you do not understand what happened, include the log when
you post a bug report. See How to Report Bugs or Problems.

• There is a mysqld process running

This indicates that the server is running, in which case the grant tables have probably been created already. If so, there is no
need to run mysql_install_db at all because it needs to be run only once (when you install MySQL the first time).

• Installing a second mysqld server does not work when one server is running

This can happen when you have an existing MySQL installation, but want to put a new installation in a different location. For
example, you might have a production installation, but you want to create a second installation for testing purposes. Generally
the problem that occurs when you try to run a second server is that it tries to use a network interface that is in use by the first
server. In this case, you should see one of the following error messages:

Can't start server: Bind on TCP/IP port:
Address already in use
Can't start server: Bind on unix socket...

For instructions on setting up multiple servers, see Running Multiple MySQL Servers on the Same Machine.

• You do not have write access to the /tmp directory

Post-Installation Setup and Testing

76

http://dev.mysql.com/doc/refman/6.0/en/time-zone-support.html
http://dev.mysql.com/doc/refman/5.1/en/bug-reports.html
http://dev.mysql.com/doc/refman/6.0/en/multiple-servers.html

If you do not have write access to create temporary files or a Unix socket file in the default location (the /tmp directory), an er-
ror occurs when you run mysql_install_db or the mysqld server.

You can specify different locations for the temporary directory and Unix socket file by executing these commands prior to start-
ing mysql_install_db or mysqld, where some_tmp_dir is the full path name to some directory for which you have
write permission:

shell> TMPDIR=/some_tmp_dir/
shell> MYSQL_UNIX_PORT=/some_tmp_dir/mysql.sock
shell> export TMPDIR MYSQL_UNIX_PORT

Then you should be able to run mysql_install_db and start the server with these commands:

shell> bin/mysql_install_db --user=mysql
shell> bin/mysqld_safe --user=mysql &

If mysql_install_db is located in the scripts directory, modify the first command to scripts/
mysql_install_db.

See How to Protect or Change the MySQL Unix Socket File, and Chapter 14, Environment Variables.

There are some alternatives to running the mysql_install_db script provided in the MySQL distribution:

• If you want the initial privileges to be different from the standard defaults, you can modify mysql_install_db before you
run it. However, it is preferable to use GRANT and REVOKE to change the privileges after the grant tables have been set up. In
other words, you can run mysql_install_db, and then use mysql -u root mysql to connect to the server as the
MySQL root user so that you can issue the necessary GRANT and REVOKE statements.

If you want to install MySQL on several machines with the same privileges, you can put the GRANT and REVOKE statements in
a file and execute the file as a script using mysql after running mysql_install_db. For example:

shell> bin/mysql_install_db --user=mysql
shell> bin/mysql -u root < your_script_file

By doing this, you can avoid having to issue the statements manually on each machine.

• It is possible to re-create the grant tables completely after they have previously been created. You might want to do this if
you're just learning how to use GRANT and REVOKE and have made so many modifications after running
mysql_install_db that you want to wipe out the tables and start over.

To re-create the grant tables, remove all the .frm, .MYI, and .MYD files in the mysql database directory. Then run the
mysql_install_db script again.

• You can start mysqld manually using the --skip-grant-tables option and add the privilege information yourself using
mysql:

shell> bin/mysqld_safe --user=mysql --skip-grant-tables &
shell> bin/mysql mysql

From mysql, manually execute the SQL commands contained in mysql_install_db. Make sure that you run mysqlad-
min flush-privileges or mysqladmin reload afterward to tell the server to reload the grant tables.

Note that by not using mysql_install_db, you not only have to populate the grant tables manually, you also have to create
them first.

11.2.2. Starting and Stopping MySQL Automatically
Generally, you start the mysqld server in one of these ways:

• By invoking mysqld directly. This works on any platform.

• By running the MySQL server as a Windows service. The service can be set to start the server automatically when Windows
starts, or as a manual service that you start on request. For instructions, see Section 3.11, “Starting MySQL as a Windows Ser-
vice”.

Post-Installation Setup and Testing

77

http://dev.mysql.com/doc/refman/6.0/en/administration-issues.html#problems-with-mysql-sock
http://dev.mysql.com/doc/refman/6.0/en/grant.html
http://dev.mysql.com/doc/refman/6.0/en/revoke.html
http://dev.mysql.com/doc/refman/6.0/en/grant.html
http://dev.mysql.com/doc/refman/6.0/en/revoke.html
http://dev.mysql.com/doc/refman/6.0/en/grant.html
http://dev.mysql.com/doc/refman/6.0/en/revoke.html
http://dev.mysql.com/doc/refman/6.0/en/grant.html
http://dev.mysql.com/doc/refman/6.0/en/revoke.html
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_skip-grant-tables

• By invoking mysqld_safe, which tries to determine the proper options for mysqld and then runs it with those options. This
script is used on Unix and Unix-like systems. See mysqld_safe.

• By invoking mysql.server. This script is used primarily at system startup and shutdown on systems that use System V-
style run directories, where it usually is installed under the name mysql. The mysql.server script starts the server by in-
voking mysqld_safe. See mysql.server.

• On Mac OS X, you can install a separate MySQL Startup Item package to enable the automatic startup of MySQL on system
startup. The Startup Item starts the server by invoking mysql.server. See Chapter 5, Installing MySQL on Mac OS X, for
details.

The mysqld_safe and mysql.server scripts and the Mac OS X Startup Item can be used to start the server manually, or
automatically at system startup time. mysql.server and the Startup Item also can be used to stop the server.

To start or stop the server manually using the mysql.server script, invoke it with start or stop arguments:

shell> mysql.server start
shell> mysql.server stop

Before mysql.server starts the server, it changes location to the MySQL installation directory, and then invokes
mysqld_safe. If you want the server to run as some specific user, add an appropriate user option to the [mysqld] group of
the /etc/my.cnf option file, as shown later in this section. (It is possible that you will need to edit mysql.server if you've
installed a binary distribution of MySQL in a non-standard location. Modify it to cd into the proper directory before it runs
mysqld_safe. If you do this, your modified version of mysql.server may be overwritten if you upgrade MySQL in the fu-
ture, so you should make a copy of your edited version that you can reinstall.)

mysql.server stop stops the server by sending a signal to it. You can also stop the server manually by executing mysqlad-
min shutdown.

To start and stop MySQL automatically on your server, you need to add start and stop commands to the appropriate places in your
/etc/rc* files.

If you use the Linux server RPM package (MySQL-server-VERSION.rpm), the mysql.server script is installed in the /
etc/init.d directory with the name mysql. You need not install it manually. See Chapter 4, Installing MySQL from RPM
Packages on Linux, for more information on the Linux RPM packages.

Some vendors provide RPM packages that install a startup script under a different name such as mysqld.

If you install MySQL from a source distribution or using a binary distribution format that does not install mysql.server auto-
matically, you can install it manually. The script can be found in the support-files directory under the MySQL installation
directory or in a MySQL source tree.

To install mysql.server manually, copy it to the /etc/init.d directory with the name mysql, and then make it executable.
Do this by changing location into the appropriate directory where mysql.server is located and executing these commands:

shell> cp mysql.server /etc/init.d/mysql
shell> chmod +x /etc/init.d/mysql

Older Red Hat systems use the /etc/rc.d/init.d directory rather than /etc/init.d. Adjust the preceding commands ac-
cordingly. Alternatively, first create /etc/init.d as a symbolic link that points to /etc/rc.d/init.d:

shell> cd /etc
shell> ln -s rc.d/init.d .

After installing the script, the commands needed to activate it to run at system startup depend on your operating system. On Linux,
you can use chkconfig:

shell> chkconfig --add mysql

On some Linux systems, the following command also seems to be necessary to fully enable the mysql script:

shell> chkconfig --level 345 mysql on

On FreeBSD, startup scripts generally should go in /usr/local/etc/rc.d/. The rc(8) manual page states that scripts in
this directory are executed only if their basename matches the *.sh shell file name pattern. Any other files or directories present
within the directory are silently ignored. In other words, on FreeBSD, you should install the mysql.server script as /
usr/local/etc/rc.d/mysql.server.sh to enable automatic startup.

As an alternative to the preceding setup, some operating systems also use /etc/rc.local or /etc/init.d/boot.local

Post-Installation Setup and Testing

78

http://dev.mysql.com/doc/refman/6.0/en/mysqld-safe.html
http://dev.mysql.com/doc/refman/6.0/en/mysqld-safe.html#mysql-server

to start additional services on startup. To start up MySQL using this method, you could append a command like the one following
to the appropriate startup file:

/bin/sh -c 'cd /usr/local/mysql; ./bin/mysqld_safe --user=mysql &'

For other systems, consult your operating system documentation to see how to install startup scripts.

You can add options for mysql.server in a global /etc/my.cnf file. A typical /etc/my.cnf file might look like this:

[mysqld]
datadir=/usr/local/mysql/var
socket=/var/tmp/mysql.sock
port=3306
user=mysql
[mysql.server]
basedir=/usr/local/mysql

The mysql.server script supports the following options: basedir, datadir, and pid-file. If specified, they must be
placed in an option file, not on the command line. mysql.server supports only start and stop as command-line arguments.

The following table shows which option groups the server and each startup script read from option files.

Script Option Groups

mysqld [mysqld], [server], [mysqld-major_version]

mysqld_safe [mysqld], [server], [mysqld_safe]

mysql.server [mysqld], [mysql.server], [server]

[mysqld-major_version] means that groups with names like [mysqld-5.1] and [mysqld-6.0] are read by servers
having versions 5.1.x, 6.0.x, and so forth. This feature can be used to specify options that can be read only by servers within a given
release series.

For backward compatibility, mysql.server also reads the [mysql_server] group and mysqld_safe also reads the
[safe_mysqld] group. However, you should update your option files to use the [mysql.server] and [mysqld_safe]
groups instead when using MySQL 6.0.

See Using Option Files.

11.2.3. Starting and Troubleshooting the MySQL Server
This section provides troubleshooting suggestions for problems starting the server on Unix. If you are using Windows, see Sec-
tion 3.13, “Troubleshooting a MySQL Installation Under Windows”.

If you have problems starting the server, here are some things to try:

• Check the error log to see why the server does not start.

• Specify any special options needed by the storage engines you are using.

• Make sure that the server knows where to find the data directory.

• Make sure that the server can access the data directory. The ownership and permissions of the data directory and its contents
must be set such that the server can read and modify them.

• Verify that the network interfaces the server wants to use are available.

Some storage engines have options that control their behavior. You can create a my.cnf file and specify startup options for the en-
gines that you plan to use. If you are going to use storage engines that support transactional tables (InnoDB, NDB), be sure that you
have them configured the way you want before starting the server:

MySQL Enterprise
For expert advice on start-up options appropriate to your circumstances, subscribe to The MySQL Enter-
prise Monitor. For more information, see http://www.mysql.com/products/enterprise/advisors.html.

• If you are using InnoDB tables, see InnoDB Configuration.

Storage engines will use default option values if you specify none, but it is recommended that you review the available options and

Post-Installation Setup and Testing

79

http://dev.mysql.com/doc/refman/6.0/en/option-files.html
http://www.mysql.com/products/enterprise/advisors.html
http://dev.mysql.com/doc/refman/6.0/en/innodb-configuration.html

specify explicit values for those for which the defaults are not appropriate for your installation.

When the mysqld server starts, it changes location to the data directory. This is where it expects to find databases and where it ex-
pects to write log files. The server also writes the pid (process ID) file in the data directory.

The data directory location is hardwired in when the server is compiled. This is where the server looks for the data directory by de-
fault. If the data directory is located somewhere else on your system, the server will not work properly. You can determine what the
default path settings are by invoking mysqld with the --verbose and --help options.

If the default locations don't match the MySQL installation layout on your system, you can override them by specifying options to
mysqld or mysqld_safe on the command line or in an option file.

To specify the location of the data directory explicitly, use the --datadir option. However, normally you can tell mysqld the
location of the base directory under which MySQL is installed and it looks for the data directory there. You can do this with the -
-basedir option.

To check the effect of specifying path options, invoke mysqld with those options followed by the --verbose and --help op-
tions. For example, if you change location into the directory where mysqld is installed and then run the following command, it
shows the effect of starting the server with a base directory of /usr/local:

shell> ./mysqld --basedir=/usr/local --verbose --help

You can specify other options such as --datadir as well, but --verbose and --help must be the last options.

Once you determine the path settings you want, start the server without --verbose and --help.

If mysqld is currently running, you can find out what path settings it is using by executing this command:

shell> mysqladmin variables

Or:

shell> mysqladmin -h host_name variables

host_name is the name of the MySQL server host.

If you get Errcode 13 (which means Permission denied) when starting mysqld, this means that the privileges of the
data directory or its contents do not allow the server access. In this case, you change the permissions for the involved files and dir-
ectories so that the server has the right to use them. You can also start the server as root, but this raises security issues and should
be avoided.

On Unix, change location into the data directory and check the ownership of the data directory and its contents to make sure the
server has access. For example, if the data directory is /usr/local/mysql/var, use this command:

shell> ls -la /usr/local/mysql/var

If the data directory or its files or subdirectories are not owned by the login account that you use for running the server, change
their ownership to that account. If the account is named mysql, use these commands:

shell> chown -R mysql /usr/local/mysql/var
shell> chgrp -R mysql /usr/local/mysql/var

If the server fails to start up correctly, check the error log. Log files are located in the data directory (typically C:\Program
Files\MySQL\MySQL Server 6.0\data on Windows, /usr/local/mysql/data for a Unix binary distribution, and
/usr/local/var for a Unix source distribution). Look in the data directory for files with names of the form host_name.err
and host_name.log, where host_name is the name of your server host. Then examine the last few lines of these files. On
Unix, you can use tail to display them:

shell> tail host_name.err
shell> tail host_name.log

The error log should contain information that indicates why the server couldn't start.

If either of the following errors occur, it means that some other program (perhaps another mysqld server) is using the TCP/IP port
or Unix socket file that mysqld is trying to use:

Can't start server: Bind on TCP/IP port: Address already in use
Can't start server: Bind on unix socket...

Post-Installation Setup and Testing

80

http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_verbose
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_help
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_datadir
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_basedir
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_basedir
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_verbose
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_help
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_datadir
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_verbose
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_help
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_verbose
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_help

Use ps to determine whether you have another mysqld server running. If so, shut down the server before starting mysqld again.
(If another server is running, and you really want to run multiple servers, you can find information about how to do so in Running
Multiple MySQL Servers on the Same Machine.)

If no other server is running, try to execute the command telnet your_host_name tcp_ip_port_number. (The default
MySQL port number is 3306.) Then press Enter a couple of times. If you don't get an error message like telnet: Unable to
connect to remote host: Connection refused, some other program is using the TCP/IP port that mysqld is try-
ing to use. You'll need to track down what program this is and disable it, or else tell mysqld to listen to a different port with the -
-port option. In this case, you'll also need to specify the port number for client programs when connecting to the server via TCP/
IP.

Another reason the port might be inaccessible is that you have a firewall running that blocks connections to it. If so, modify the
firewall settings to allow access to the port.

If the server starts but you can't connect to it, you should make sure that you have an entry in /etc/hosts that looks like this:

127.0.0.1 localhost

This problem occurs only on systems that do not have a working thread library and for which MySQL must be configured to use
MIT-pthreads.

If you cannot get mysqld to start, you can try to make a trace file to find the problem by using the --debug option. See MySQL
Internals: Porting.

11.3. Securing the Initial MySQL Accounts
Part of the MySQL installation process is to set up the mysql database that contains the grant tables:

• Windows distributions contain preinitialized grant tables that are installed automatically.

• On Unix, the grant tables are populated by the mysql_install_db program. Some installation methods run this program
for you. Others require that you execute it manually. For details, see Section 11.2, “Unix Post-Installation Procedures”.

The grant tables define the initial MySQL user accounts and their access privileges. These accounts are set up as follows:

• Accounts with the user name root are created. These are superuser accounts that can do anything. The initial root account
passwords are empty, so anyone can connect to the MySQL server as root — without a password — and be granted all priv-
ileges.

• On Windows, one root account is created; this account allows connecting from the local host only. The Windows installer
will optionally create an account allowing for connections from any host only if the user selects the ENABLE ROOT ACCESS
FROM REMOTE MACHINES option during installation.

• On Unix, both root accounts are for connections from the local host. Connections must be made from the local host by
specifying a host name of localhost for one of the accounts, or the actual host name or IP number for the other.

• Two anonymous-user accounts are created, each with an empty user name. The anonymous accounts have no password, so any-
one can use them to connect to the MySQL server.

• On Windows, one anonymous account is for connections from the local host. It has no global privileges. The other is for
connections from any host and has all privileges for the test database and for other databases with names that start with
test.

• On Unix, both anonymous accounts are for connections from the local host. Connections must be made from the local host
by specifying a host name of localhost for one of the accounts, or the actual host name or IP number for the other.
These accounts have all privileges for the test database and for other databases with names that start with test_.

As noted, none of the initial accounts have passwords. This means that your MySQL installation is unprotected until you do
something about it:

• If you want to prevent clients from connecting as anonymous users without a password, you should either assign a password to
each anonymous account or else remove the accounts.

• You should assign a password to each MySQL root account.

Post-Installation Setup and Testing

81

http://dev.mysql.com/doc/refman/6.0/en/multiple-servers.html
http://dev.mysql.com/doc/refman/6.0/en/multiple-servers.html
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_port
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_port
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_debug
http://forge.mysql.com/wiki/MySQL_Internals_Porting
http://forge.mysql.com/wiki/MySQL_Internals_Porting

The following instructions describe how to set up passwords for the initial MySQL accounts, first for the anonymous accounts and
then for the root accounts. Replace “newpwd” in the examples with the actual password that you want to use. The instructions
also cover how to remove the anonymous accounts, should you prefer not to allow anonymous access at all.

You might want to defer setting the passwords until later, so that you don't need to specify them while you perform additional setup
or testing. However, be sure to set them before using your installation for production purposes.

Anonymous Account Password Assignment

To assign passwords to the anonymous accounts, connect to the server as root and then use either SET PASSWORD or UPDATE.
In either case, be sure to encrypt the password using the PASSWORD() function.

To use SET PASSWORD on Windows, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR ''@'%' = PASSWORD('newpwd');

To use SET PASSWORD on Unix, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR ''@'host_name' = PASSWORD('newpwd');

In the second SET PASSWORD statement, replace host_name with the name of the server host. This is the name that is specified
in the Host column of the non-localhost record for root in the user table. If you don't know what host name this is, issue
the following statement before using SET PASSWORD:

mysql> SELECT Host, User FROM mysql.user;

Look for the record that has root in the User column and something other than localhost in the Host column. Then use that
Host value in the second SET PASSWORD statement.

Anonymous Account Removal

If you prefer to remove the anonymous accounts instead, do so as follows:

shell> mysql -u root
mysql> DROP USER '';

The DROP statement applies both to Windows and to Unix. On Windows, if you want to remove only the anonymous account that
has the same privileges as root, do this instead:

shell> mysql -u root
mysql> DROP USER ''@'localhost';

That account allows anonymous access but has full privileges, so removing it improves security.

root Account Password Assignment

You can assign passwords to the root accounts in several ways. The following discussion demonstrates three methods:

• Use the SET PASSWORD statement

• Use the mysqladmin command-line client program

• Use the UPDATE statement

To assign passwords using SET PASSWORD, connect to the server as root and issue SET PASSWORD statements. Be sure to en-
crypt the password using the PASSWORD() function.

For Windows, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR 'root'@'%' = PASSWORD('newpwd');

For Unix, do this:

Post-Installation Setup and Testing

82

http://dev.mysql.com/doc/refman/6.0/en/set-password.html
http://dev.mysql.com/doc/refman/6.0/en/update.html
http://dev.mysql.com/doc/refman/6.0/en/encryption-functions.html#function_password
http://dev.mysql.com/doc/refman/6.0/en/set-password.html
http://dev.mysql.com/doc/refman/6.0/en/set-password.html
http://dev.mysql.com/doc/refman/6.0/en/set-password.html
http://dev.mysql.com/doc/refman/6.0/en/set-password.html
http://dev.mysql.com/doc/refman/6.0/en/set-password.html
http://dev.mysql.com/doc/refman/6.0/en/set-password.html
http://dev.mysql.com/doc/refman/6.0/en/update.html
http://dev.mysql.com/doc/refman/6.0/en/set-password.html
http://dev.mysql.com/doc/refman/6.0/en/set-password.html
http://dev.mysql.com/doc/refman/6.0/en/encryption-functions.html#function_password

shell> mysql -u root
mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR 'root'@'host_name' = PASSWORD('newpwd');

In the second SET PASSWORD statement, replace host_name with the name of the server host. This is the same host name that
you used when you assigned the anonymous account passwords.

If the user table contains an account with User and Host values of 'root' and '127.0.0.1', use an additional SET
PASSWORD statement to set that account's password:

mysql> SET PASSWORD FOR 'root'@'127.0.0.1' = PASSWORD('newpwd');

To assign passwords to the root accounts using mysqladmin, execute the following commands:

shell> mysqladmin -u root password "newpwd"
shell> mysqladmin -u root -h host_name password "newpwd"

These commands apply both to Windows and to Unix. In the second command, replace host_name with the name of the server
host. The double quotes around the password are not always necessary, but you should use them if the password contains spaces or
other characters that are special to your command interpreter.

The mysqladmin method of setting the root account passwords does not set the password for the 'root'@'127.0.0.1'
account. To do so, use SET PASSWORD as shown earlier.

You can also use UPDATE to modify the user table directly. The following UPDATE statement assigns a password to all root
accounts:

shell> mysql -u root
mysql> UPDATE mysql.user SET Password = PASSWORD('newpwd')

-> WHERE User = 'root';
mysql> FLUSH PRIVILEGES;

The UPDATE statement applies both to Windows and to Unix.

After the passwords have been set, you must supply the appropriate password whenever you connect to the server. For example, if
you want to use mysqladmin to shut down the server, you can do so using this command:

shell> mysqladmin -u root -p shutdown
Enter password: (enter root password here)

Note

If you forget your root password after setting it up, How to Reset the Root Password, covers the procedure for reset-
ting it.

To set up additional accounts, you can use the GRANT statement. For instructions, see Adding User Accounts.

Post-Installation Setup and Testing

83

http://dev.mysql.com/doc/refman/6.0/en/set-password.html
http://dev.mysql.com/doc/refman/6.0/en/set-password.html
http://dev.mysql.com/doc/refman/6.0/en/set-password.html
http://dev.mysql.com/doc/refman/6.0/en/set-password.html
http://dev.mysql.com/doc/refman/6.0/en/update.html
http://dev.mysql.com/doc/refman/6.0/en/update.html
http://dev.mysql.com/doc/refman/6.0/en/update.html
http://dev.mysql.com/doc/refman/6.0/en/administration-issues.html#resetting-permissions
http://dev.mysql.com/doc/refman/6.0/en/grant.html
http://dev.mysql.com/doc/refman/6.0/en/adding-users.html

Chapter 12. Upgrading or Downgrading MySQL

12.1. Upgrading MySQL
As a general rule, to upgrade from one release series to another, you should go to the next series rather than skipping a series. To
upgrade from a release series previous to MySQL 5.1, upgrade to each successive release series in turn until you have reached
MySQL 5.1, and then proceed with the upgrade to MySQL 6.0. For example, if you currently are running MySQL 4.1 and wish to
upgrade to a newer series, upgrade to MySQL 5.0 first before upgrading to 5.1, and so forth. For information on upgrading to
MySQL 5.1, see the MySQL 5.1 Reference Manual.

To upgrade from MySQL 5.1 to 6.0, use the items in the following checklist as a guide:

• Before any upgrade, back up your databases, including the mysql database that contains the grant tables. See Database
Backups.

• Read all the notes in Section 12.1.1, “Upgrading from MySQL 5.1 to 6.0”. These notes enable you to identify upgrade issues
that apply to your current MySQL installation. Some incompatibilities discussed in that section require your attention before
upgrading. Others should be dealt with after upgrading.

• Read MySQL Change History as well, which provides information about features that are new in MySQL 6.0 or differ from
those found in MySQL 5.1.

• After you upgrade to a new version of MySQL, run mysql_upgrade (see mysql_upgrade). This program checks your
tables, and attempts to repair them if necessary. It also updates your grant tables to make sure that they have the current struc-
ture so that you can take advantage of any new capabilities. (Some releases of MySQL introduce changes to the structure of the
grant tables to add new privileges or features.)

• If you are running MySQL Server on Windows, see Section 3.14, “Upgrading MySQL on Windows”.

• If you are using replication, see Upgrading a Replication Setup, for information on upgrading your replication setup.

• If you are upgrading an installation originally produced by installing multiple RPM packages, it is best to upgrade all the pack-
ages, not just some. For example, if you previously installed the server and client RPMs, do not upgrade just the server RPM.

• If you have created a user-defined function (UDF) with a given name and upgrade MySQL to a version that implements a new
built-in function with the same name, the UDF becomes inaccessible. To correct this, use DROP FUNCTION to drop the UDF,
and then use CREATE FUNCTION to re-create the UDF with a different non-conflicting name. The same is true if the new ver-
sion of MySQL implements a built-in function with the same name as an existing stored function. See Function Name Parsing
and Resolution, for the rules describing how the server interprets references to different kinds of functions.

You can always move the MySQL format files and data files between different versions on systems with the same architecture as
long as you stay within versions for the same release series of MySQL.

If you are cautious about using new versions, you can always rename your old mysqld before installing a newer one. For ex-
ample, if you are using MySQL 5.1.13 and want to upgrade to 6.0.10, rename your current server from mysqld to mysqld-
5.1.13. If your new mysqld then does something unexpected, you can simply shut it down and restart with your old mysqld.

If, after an upgrade, you experience problems with recompiled client programs, such as Commands out of sync or unexpec-
ted core dumps, you probably have used old header or library files when compiling your programs. In this case, you should check
the date for your mysql.h file and libmysqlclient.a library to verify that they are from the new MySQL distribution. If
not, recompile your programs with the new headers and libraries.

If problems occur, such as that the new mysqld server does not start or that you cannot connect without a password, verify that
you do not have an old my.cnf file from your previous installation. You can check this with the --print-defaults option
(for example, mysqld --print-defaults). If this command displays anything other than the program name, you have an
active my.cnf file that affects server or client operation.

It is a good idea to rebuild and reinstall the Perl DBD::mysql module whenever you install a new release of MySQL. The same
applies to other MySQL interfaces as well, such as PHP mysql extensions and the Python MySQLdb module.

12.1.1. Upgrading from MySQL 5.1 to 6.0

Note

It is good practice to back up your data before installing any new version of software. Although MySQL works very
hard to ensure a high level of quality, you should protect your data by making a backup.

84

http://dev.mysql.com/doc/refman/6.0/en/backup.html
http://dev.mysql.com/doc/refman/6.0/en/backup.html
http://dev.mysql.com/doc/refman/6.0/en/news.html
http://dev.mysql.com/doc/refman/6.0/en/mysql-tzinfo-to-sql.html#mysql-upgrade
http://dev.mysql.com/doc/refman/6.0/en/replication-upgrade.html
http://dev.mysql.com/doc/refman/6.0/en/drop-function.html
http://dev.mysql.com/doc/refman/6.0/en/create-function.html
http://dev.mysql.com/doc/refman/6.0/en/function-resolution.html
http://dev.mysql.com/doc/refman/6.0/en/function-resolution.html
http://dev.mysql.com/doc/refman/6.0/en/option-file-options.html#option_general_print-defaults

To upgrade to 6.0 from any previous version, MySQL recommends that you dump your tables with mysqldump be-
fore upgrading and reload the dump file after upgrading.

In general, you should do the following when upgrading from MySQL 5.1 to 6.0:

• Read all the items in the following sections to see whether any of them might affect your applications:

• Section 12.1, “Upgrading MySQL”, has general update information.

• The items in the change lists found later in this section enable you to identify upgrade issues that apply to your current
MySQL installation.

• The MySQL 6.0 change history describes significant new features you can use in 6.0 or that differ from those found in
MySQL 5.1. Some of these changes may result in incompatibilities. See Changes in release 6.0.x (Development).

• Note particularly any changes that are marked Known issue or Incompatible change. These incompatibilities with earlier ver-
sions of MySQL may require your attention before you upgrade.

Our aim is to avoid these changes, but occasionally they are necessary to correct problems that would be worse than an incom-
patibility between releases. If any upgrade issue applicable to your installation involves an incompatibility that requires special
handling, follow the instructions given in the incompatibility description. Often this will involve a dump and reload, or use of a
statement such as CHECK TABLE or REPAIR TABLE.

For dump and reload instructions, see Section 12.4, “Rebuilding or Repairing Tables or Indexes”. Any procedure that involves
REPAIR TABLE with the USE_FRM option must be done before upgrading. Use of this statement with a version of MySQL
different from the one used to create the table (that is, using it after upgrading) may damage the table. See REPAIR TABLE
Syntax.

• After you upgrade to a new version of MySQL, run mysql_upgrade (see mysql_upgrade). This program checks your
tables, and attempts to repair them if necessary. It also updates your grant tables to make sure that they have the current struc-
ture so that you can take advantage of any new capabilities. (Some releases of MySQL introduce changes to the structure of the
grant tables to add new privileges or features.)

• Check Section 12.3, “Checking Whether Table Indexes Must Be Rebuilt”, to see whether changes to character sets or collations
were made that affect your table indexes. If so, you will need to rebuild the affected indexes using the instructions in Sec-
tion 12.4, “Rebuilding or Repairing Tables or Indexes”.

• If you are running MySQL Server on Windows, see Section 3.14, “Upgrading MySQL on Windows”.

• If you are using replication, see Upgrading a Replication Setup, for information on upgrading your replication setup.

MySQL Enterprise
MySQL Enterprise subscribers will find more information about upgrading in the Knowledge Base articles
found at Upgrading. Access to the MySQL Knowledge Base collection of articles is one of the advantages
of subscribing to MySQL Enterprise. For more information, see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

The following lists describe changes that may affect applications and that you should watch out for when upgrading to MySQL 6.0.

Server Changes:

• Known issue: MySQL introduces encoding for table names that have non-ASCII characters (see Mapping of Identifiers to File
Names). After a binary upgrade from MySQL 5.0 to 5.1 or higher, the server recognizes names that have non-ASCII characters
and adds a #mysql50# prefix to them.

As of MySQL 6.0.10, mysql_upgrade encodes these names by executing the following command:

mysqlcheck --all-databases --check-upgrade --fix-db-names --fix-table-names

Prior to MySQL 6.0.10, mysql_upgrade does not execute this command, so you should execute it manually if you have
database or table names that contain non-alphanumeric characters.

mysqlcheck cannot fix names that contain literal instances of the @ character that is used for encoding special characters. If
you have databases or tables that contain this character, use mysqldump to dump them before upgrading to MySQL 6.0, and
then reload the dump file after upgrading.

• Known issue: Before MySQL 6.0.8, the CHECK TABLE ... FOR UPGRADE statement did not check for incompatible col-
lation changes made in MySQL 5.1.24. (This also affects mysqlcheck and mysql_upgrade, which cause that statement to

Upgrading or Downgrading MySQL

85

http://dev.mysql.com/doc/refman/6.0/en/news-6-0-x.html
http://dev.mysql.com/doc/refman/6.0/en/check-table.html
http://dev.mysql.com/doc/refman/6.0/en/repair-table.html
http://dev.mysql.com/doc/refman/6.0/en/repair-table.html
http://dev.mysql.com/doc/refman/6.0/en/repair-table.html
http://dev.mysql.com/doc/refman/6.0/en/repair-table.html
http://dev.mysql.com/doc/refman/6.0/en/mysql-tzinfo-to-sql.html#mysql-upgrade
http://dev.mysql.com/doc/refman/6.0/en/replication-upgrade.html
https://kb.mysql.com/search.php?cat=search&category=41
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html
http://dev.mysql.com/doc/refman/6.0/en/identifier-mapping.html
http://dev.mysql.com/doc/refman/6.0/en/identifier-mapping.html
http://dev.mysql.com/doc/refman/6.0/en/check-table.html

be executed.)

Prior to the fix made in 6.0.8, a binary upgrade (performed without dumping tables with mysqldump before the upgrade and
reloading the dump file after the upgrade) would corrupt tables. After the fix, CHECK TABLE ... FOR UPGRADE properly
detects the problem and warns about tables that need repair.

However, the fix is not backward compatible and can result in a downgrading problem under these circumstances:

1. Perform a binary upgrade to a version of MySQL that includes the fix.

2. Run CHECK TABLE ... FOR UPGRADE (or mysqlcheck or mysql_upgrade) to upgrade tables.

3. Perform a binary downgrade to a version of MySQL that does not include the fix.

The solution is to dump tables with mysqldump before the downgrade and reload the dump file after the downgrade. Alternat-
ively, drop and recreate affected indexes after upgrading.

• Known issue: In connection with view creation, the server created arc directories inside database directories and maintained
useless copies of .frm files there. Creation and renaming procedures of those copies as well as creation of arc directories has
been discontinued in MySQL 6.0.8.

This change does cause a problem when downgrading to older server versions which manifests itself under these circumstances:

1. Create a view v_orig in MySQL 6.0.8 or higher.

2. Rename the view to v_new and then back to v_orig.

3. Downgrade to an older 6.0.x server and run mysql_upgrade.

4. Try to rename v_orig to v_new again. This operation fails.

As a workaround to avoid this problem, use either of these approaches:

• Dump your data using mysqldump before downgrading and reload the dump file after downgrading.

• Instead of renaming a view after the downgrade, drop it and recreate it.

• Incompatible change: Character set or collation changes were made in MySQL 6.0.1, 6.0.5, and 6.0.6 that may require table
indexes to be rebuilt. For details, see Section 12.3, “Checking Whether Table Indexes Must Be Rebuilt”.

• Incompatible change: From MySQL 6.0.5 to 6.0.9, the UPDATE statement was changed such that assigning NULL to a NOT
NULL column caused an error even when strict SQL mode was not enabled. The original behavior before MySQL 6.0.5 was
that such assignments caused an error only in strict SQL mode, and otherwise set the column to the implicit default value for
the column data type and generated a warning. (For information about implicit default values, see Data Type Default Values.)

The change caused compatibility problems for applications that relied on the original behavior. It also caused replication prob-
lems between servers that had the original behavior and those that did not, for applications that assigned NULL to NOT NULL
columns in UPDATE statements without strict SQL mode enabled. The change was reverted in MySQL 6.0.10 so that UPDATE
again had the original behavior. Problems can still occur if you replicate between servers that have the modified UPDATE beha-
vior and those that do not.

• Incompatible change: In MySQL 6.0.6, a change was made to the way that the server handles prepared statements. This af-
fects prepared statements processed at the SQL level (using the PREPARE statement) and those processed using the binary cli-
ent-server protocol (using the mysql_stmt_prepare() C API function).

Previously, changes to metadata of tables or views referred to in a prepared statement could cause a server crash when the state-
ment was next executed, or perhaps an error at execute time with a crash occurring later. For example, this could happen after
dropping a table and recreating it with a different definition.

Now metadata changes to tables or views referred to by prepared statements are detected and cause automatic repreparation of
the statement when it is next executed. Metadata changes occur for DDL statements such as those that create, drop, alter, re-
name, or truncate tables, or that analyze, optimize, or repair tables. Repreparation also occurs after referenced tables or views
are flushed from the table definition cache, either implicitly to make room for new entries in the cache, or explicitly due to
FLUSH TABLES.

Repreparation is automatic, but to the extent that it occurs, performance of prepared statements is diminished.

Table content changes (for example, with INSERT or UPDATE) do not cause repreparation, nor do SELECT statements.

An incompatibility with previous versions of MySQL is that a prepared statement may now return a different set of columns or
different column types from one execution to the next. For example, if the prepared statement is SELECT * FROM t1, alter-

Upgrading or Downgrading MySQL

86

http://dev.mysql.com/doc/refman/6.0/en/check-table.html
http://dev.mysql.com/doc/refman/6.0/en/check-table.html
http://dev.mysql.com/doc/refman/6.0/en/update.html
http://dev.mysql.com/doc/refman/6.0/en/data-type-defaults.html
http://dev.mysql.com/doc/refman/6.0/en/update.html
http://dev.mysql.com/doc/refman/6.0/en/update.html
http://dev.mysql.com/doc/refman/6.0/en/update.html
http://dev.mysql.com/doc/refman/6.0/en/prepare.html
http://dev.mysql.com/doc/refman/6.0/en/mysql-stmt-prepare.html
http://dev.mysql.com/doc/refman/6.0/en/flush.html
http://dev.mysql.com/doc/refman/6.0/en/insert.html
http://dev.mysql.com/doc/refman/6.0/en/update.html
http://dev.mysql.com/doc/refman/6.0/en/select.html

ing t1 to contain a different number of columns causes the next execution to return a number of columns different from the
previous execution.

Older versions of the client library cannot handle this change in behavior. For applications that use prepared statements with the
new server, an upgrade to the new client library is strongly recommended.

Along with this change to statement repreparation, the default value of the table_definition_cache system variable has
been increased from 128 to 256. The purpose of this increase is to lessen the chance that prepared statements will need repre-
paration due to referred-to tables/views having been flushed from the cache to make room for new entries.

A new status variable, Com_stmt_reprepare, has been introduced to track the number of repreparations.

• Incompatible change: As of MySQL 6.0.5, the server includes dtoa, a library for conversion between strings and numbers by
David M. Gay. In MySQL, this library provides the basis for improved conversion between string or DECIMAL values and ap-
proximate-value (FLOAT/DOUBLE) numbers.

Because the conversions produced by this library differ in some cases from previous results, the potential exists for incompatib-
ilities in applications that rely on previous results. For example, applications that depend on a specific exact result from previ-
ous conversions might need adjustment to accommodate additional precision.

For additional information about the properties of dtoa conversions, see Type Conversion in Expression Evaluation.

• Incompatible change: SHOW CREATE VIEW displays view definitions using an AS alias_name clause for each column.
If a column is created from an expression, the default alias is the expression text, which can be quite long. As of MySQL 6.0.4,
aliases for column names in CREATE VIEW statements are checked against the maximum column length of 64 characters (not
the maximum alias length of 256 characters). As a result, views created from the output of SHOW CREATE VIEW fail if any
column alias exceeds 64 characters. This can cause problems for replication or loading dump files. For additional information
and workarounds, see Restrictions on Views.

• Incompatible change: As of MySQL 6.0.4, the Unicode implementation has been extended to provide support for supplement-
ary characters that lie outside the Basic Multilingual Plane (BMP). Noteworthy features:

• utf16 and utf32 character sets have been added. These correspond to the UTF-16 and UTF-32 encodings of the Unicode
character set, and they both support supplementary characters.

• The utf8 character set from previous versions of MySQL has been renamed to utf8mb3, to reflect that its encoding uses
a maximum of three bytes for multi-byte characters. (Old tables that previously used utf8 will be reported as using
utf8mb3 after an in-place upgrade to MySQL 6.0, but otherwise work as before.)

• The new utf8 character set in MySQL 6.0 is similar to utf8mb3, but its encoding allows up to four bytes per character to
enable support for supplementary characters.

• The ucs2 character set is essentially unchanged except for the inclusion of some newer BMP characters.

In most respects, upgrading from MySQL 5.1 to 6.0 should present few problems with regard to Unicode usage, although there
are some potential areas of incompatibility. Some examples:

• For the variable-length character data types (VARCHAR and the TEXT types), the maximum length in characters for utf8
columns is less in MySQL 6.0 than previously.

• For all character data types (CHAR, VARCHAR, and the TEXT types), the maximum number of characters for utf8 columns
that can be indexed is less in MySQL 6.0 than previously.

Consequently, if you want to upgrade tables from the old utf8 (now utf8mb3) to the current utf8, it may be necessary to
change some column or index definitions.

For additional details about the new Unicode character sets and potential incompatibilities, see Unicode Support, and Upgrad-
ing from Previous to Current Unicode Support.

If you use events, a known issue is that if you upgrade from MySQL 5.1 to 6.0.4 though 6.0.6, the event scheduler will not
work, even after you run mysql_upgrade. (This is an issue only for an upgrade, not for a new installation of MySQL 6.0.x.)
As of MySQL 6.0.7, mysql_upgrade handles upgrading the system tables properly. For this reason, avoid upgrading to
MySQL 6.0.4 through 6.0.6.

• Incompatible change: As of MySQL 6.0.3, DROP TABLE is allowed only if you have acquired a WRITE lock with LOCK
TABLES, or if you hold no locks, or if the table is a TEMPORARY table.

Previously, if other tables were locked, you could drop a table with a read lock or no lock, which could lead to deadlocks
between clients. The new stricter behavior means that some usage scenarios will fail when previously they did not.

Upgrading or Downgrading MySQL

87

http://dev.mysql.com/doc/refman/6.0/en/server-system-variables.html#sysvar_table_definition_cache
http://dev.mysql.com/doc/refman/6.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/6.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/6.0/en/numeric-types.html
http://dev.mysql.com/doc/refman/6.0/en/type-conversion.html
http://dev.mysql.com/doc/refman/6.0/en/show-create-view.html
http://dev.mysql.com/doc/refman/6.0/en/create-view.html
http://dev.mysql.com/doc/refman/6.0/en/show-create-view.html
http://dev.mysql.com/doc/refman/6.0/en/view-restrictions.html
http://dev.mysql.com/doc/refman/6.0/en/char.html
http://dev.mysql.com/doc/refman/6.0/en/blob.html
http://dev.mysql.com/doc/refman/6.0/en/char.html
http://dev.mysql.com/doc/refman/6.0/en/char.html
http://dev.mysql.com/doc/refman/6.0/en/blob.html
http://dev.mysql.com/doc/refman/6.0/en/charset-unicode.html
http://dev.mysql.com/doc/refman/6.0/en/charset-unicode-upgrading.html
http://dev.mysql.com/doc/refman/6.0/en/charset-unicode-upgrading.html
http://dev.mysql.com/doc/refman/6.0/en/drop-table.html
http://dev.mysql.com/doc/refman/6.0/en/lock-tables.html
http://dev.mysql.com/doc/refman/6.0/en/lock-tables.html

SQL Changes:

• Incompatible change: Several changes were made to the processing of multiple-table DELETE statements:

• Statements could not perform cross-database deletes unless the tables were referred to without using aliases. This limitation
has been lifted and table aliases now are allowed.

• Previously, alias declarations could be given for tables elsewhere than in the table_references part of the syntax.
This could lead to ambiguous statements that have unexpected results such as deleting rows from the wrong table. Example:

DELETE FROM t1 AS a2 USING t1 AS a1 INNER JOIN t2 AS a2;

Now alias declarations can be declared only in the table_references part. Elsewhere in the statement, alias references
are allowed but not alias declarations.

• Alias resolution was improved so that it is no longer possible to have inconsistent or ambiguous aliases for tables.

Statements containing alias constructs that are no longer allowed must be rewritten.

• Some keywords are reserved in MySQL 6.0 that were not reserved in MySQL 5.1. See Reserved Words.

12.2. Downgrading MySQL
This section describes what you should do to downgrade to an older MySQL version in the unlikely case that the previous version
worked better than the new one.

If you are downgrading within the same release series (for example, from 5.1.13 to 5.1.12) the general rule is that you just have to
install the new binaries on top of the old ones. There is no need to do anything with the databases. As always, however, it is always
a good idea to make a backup.

The following items form a checklist of things you should do whenever you perform a downgrade:

• Read the upgrading section for the release series from which you are downgrading to be sure that it does not have any features
you really need. See Section 12.1, “Upgrading MySQL”.

• If there is a downgrading section for that version, you should read that as well.

• To see which new features were added between the version to which you are downgrading and your current version, see the
change logs (MySQL Change History).

• Check Section 12.3, “Checking Whether Table Indexes Must Be Rebuilt”, to see whether changes to character sets or collations
were made between your current version of MySQL and the version to which you are downgrading. If so and these changes af-
fect your table indexes, you will need to rebuild the affected indexes using the instructions in Section 12.4, “Rebuilding or Re-
pairing Tables or Indexes”.

In most cases, you can move the MySQL format files and data files between different versions on the same architecture as long as
you stay within versions for the same release series of MySQL.

If you downgrade from one release series to another, there may be incompatibilities in table storage formats. In this case, use
mysqldump to dump your tables before downgrading. After downgrading, reload the dump file using mysql or mysqlimport
to re-create your tables. For examples, see Section 12.5, “Copying MySQL Databases to Another Machine”.

A typical symptom of a downward-incompatible table format change when you downgrade is that you cannot open tables. In that
case, use the following procedure:

1. Stop the older MySQL server that you are downgrading to.

2. Restart the newer MySQL server you are downgrading from.

3. Dump any tables that were inaccessible to the older server by using mysqldump to create a dump file.

4. Stop the newer MySQL server and restart the older one.

5. Reload the dump file into the older server. Your tables should be accessible.

Upgrading or Downgrading MySQL

88

http://dev.mysql.com/doc/refman/6.0/en/delete.html
http://dev.mysql.com/doc/refman/6.0/en/reserved-words.html
http://dev.mysql.com/doc/refman/6.0/en/news.html

It might also be the case that the structure of the system tables in the mysql database has changed and that downgrading intro-
duces some loss of functionality or requires some adjustments. Here are some examples:

• Trigger creation requires the TRIGGER privilege as of MySQL 5.1. In MySQL 5.0, there is no TRIGGER privilege and SUPER
is required instead. If you downgrade from MySQL 5.1 to 5.0, you will need to give the SUPER privilege to those accounts that
had the TRIGGER privilege in 5.1.

• Triggers were added in MySQL 5.0, so if you downgrade from 5.0 to 4.1, you cannot use triggers at all.

12.2.1. Downgrading to MySQL 5.0
When downgrading to MySQL 5.0 from MySQL 5.1 or a later version, you should keep in mind the following issues relating to
features found in MySQL 5.1 and later, but not in MySQL 5.0:

• Event Scheduler. MySQL 5.0 does not support scheduled events. If your databases contain scheduled event definitions, you
should prevent them from being dumped when you use mysqldump by using the --skip-events option. (See mysql-
dump.)

• Partitioning. MySQL 5.0 does not support user-defined partitioning. If a table was created as a partitioned table in 5.1 (or if an
table created in a previous version of MySQL was altered to include partitions after an upgrade to 5.1), the table is accessible
after downgrade only if you do one of the following:

• Export the table using mysqldump and then drop it in MySQL 5.1; import the table again following the downgrade to
MySQL 5.0.

• Prior to the downgrade, remove the table's partitioning using ALTER TABLE table_name REMOVE
PARTITIONING.

12.3. Checking Whether Table Indexes Must Be Rebuilt
A binary upgrade or downgrade is one that installs one version of MySQL “in place” over an existing version, without dumping
and reloading tables:

1. Stop the server for the existing version if it is running.

2. Install a different version of MySQL. This is an upgrade if the new version is higher than the original version, a downgrade if
the version is lower.

3. Start the server for the new version.

In many cases, the tables from the previous version of MySQL can be used without change by the new version. However, some-
times modifications are made to the handling of character sets or collations that change the character sort order, which causes the
ordering of entries in any index that uses an affected character set or collation to be incorrect. Such changes result in several pos-
sible problems:

• Comparison results that differ from previous results

• Inability to find some index values due to misordered index entries

• Misordered ORDER BY results

• Tables that CHECK TABLE reports as being in need of repair

The solution to these problems is to rebuild any indexes that use an affected character set or collation, either by dropping and re-
creating the indexes, or by dumping and reloading the entire table. For information about rebuilding indexes, see Section 12.4,
“Rebuilding or Repairing Tables or Indexes”.

To check whether a table has indexes that must be rebuilt, consult the following list. It indicates which versions of MySQL intro-
duced character set or collation changes that require indexes to be rebuilt. Each entry indicates the version in which the change oc-
curred and the character sets or collations that the change affects. If the change is associated with a particular bug report, the bug
number is given.

Upgrading or Downgrading MySQL

89

http://dev.mysql.com/doc/refman/6.0/en/mysqldump.html#option_mysqldump_events
http://dev.mysql.com/doc/refman/6.0/en/mysqlcheck.html#mysqldump
http://dev.mysql.com/doc/refman/6.0/en/mysqlcheck.html#mysqldump
http://dev.mysql.com/doc/refman/6.0/en/check-table.html

The list applies both for binary upgrades and downgrades. For example, Bug#29461 was fixed in MySQL 5.0.48, so it applies to
upgrades from versions older than 5.0.48 to 5.0.48 or newer, and also to downgrades from 5.0.48 or newer to versions older than
5.0.58.

If you have tables with indexes that are affected, rebuild the indexes using the instructions given in Section 12.4, “Rebuilding or
Repairing Tables or Indexes”.

In many cases, you can use CHECK TABLE ... FOR UPGRADE to identify tables for which index rebuilding is required. (It
will report: Table upgrade required. Please do "REPAIR TABLE `tbl_name`" to fix it!) In these
cases, you can also use mysqlcheck --check-upgrade or mysql_upgrade, which execute CHECK TABLE. However,
the use of CHECK TABLE applies only after upgrades, not downgrades. Also, CHECK TABLE is not applicable to all storage en-
gines. For details about which storage engines CHECK TABLE supports, see CHECK TABLE Syntax.

Changes that cause index rebuilding to be necessary:

• MySQL 5.0.48 (Bug#29461)

Affects indexes for columns that use any of these character sets: eucjpms, euc_kr, gb2312, latin7, macce, ujis

Affected tables can be detected by CHECK TABLE ... FOR UPGRADE as of MySQL 5.1.29, 6.0.8 (see Bug#39585).

• MySQL 5.0.48 (Bug#27562)

Affects indexes that use the ascii_general_ci collation for columns that contain any of these characters: '`' GRAVE
ACCENT, '[' LEFT SQUARE BRACKET, '\' REVERSE SOLIDUS, ']' RIGHT SQUARE BRACKET, '~' TILDE

Affected tables can be detected by CHECK TABLE ... FOR UPGRADE as of MySQL 5.1.29, 6.0.8 (see Bug#39585).

• MySQL 5.1.21 (Bug#29461)

Affects indexes for columns that use any of these character sets: eucjpms, euc_kr, gb2312, latin7, macce, ujis

Affected tables can be detected by CHECK TABLE ... FOR UPGRADE as of MySQL 5.1.29, 6.0.8 (see Bug#39585).

• MySQL 5.1.23 (Bug#27562)

Affects indexes that use the ascii_general_ci collation for columns that contain any of these characters: '`' GRAVE
ACCENT, '[' LEFT SQUARE BRACKET, '\' REVERSE SOLIDUS, ']' RIGHT SQUARE BRACKET, '~' TILDE

Affected tables can be detected by CHECK TABLE ... FOR UPGRADE as of MySQL 5.1.29, 6.0.8 (see Bug#39585).

• MySQL 5.1.24 (Bug#27877)

Affects indexes that use the utf8_general_ci or ucs2_general_ci collation for columns that contain 'Ã#' LATIN
SMALL LETTER SHARP S (German).

Affected tables can be detected by CHECK TABLE ... FOR UPGRADE as of MySQL 5.1.30, 6.0.8 (see Bug#40053).

• * MySQL 6.0.1 (WL#3664)

Affects indexes that use the latin2_czech_cs collation.

Affected tables can be detected by CHECK TABLE ... FOR UPGRADE as of MySQL 6.0.9 (see Bug#40054).

MySQL 6.0.5 (Bug#33452)

Affects indexes that use the latin2_czech_cs collation.

Affected tables can be detected by CHECK TABLE ... FOR UPGRADE as of MySQL 6.0.9 (see Bug#40054).

• MySQL 6.0.5 (Bug#27877)

Affects indexes that use the utf8_general_ci or ucs2_general_ci collation for columns that contain 'Ã#' LATIN
SMALL LETTER SHARP S (German).

Affected tables can be detected by CHECK TABLE ... FOR UPGRADE as of MySQL 6.0.8 (see Bug#40053).

• MySQL 6.0.6 (Bug#25420)

Affects indexes for columns that use the following collations, if the columns contain the indicated characters:
big5_chinese_ci: '~' TILDE or '`' GRAVE ACCENT; cp866_general_ci: j LATIN SMALL LETTER J;

Upgrading or Downgrading MySQL

90

http://bugs.mysql.com/29461
http://dev.mysql.com/doc/refman/6.0/en/check-table.html
http://dev.mysql.com/doc/refman/6.0/en/check-table.html
http://dev.mysql.com/doc/refman/6.0/en/check-table.html
http://dev.mysql.com/doc/refman/6.0/en/check-table.html
http://dev.mysql.com/doc/refman/6.0/en/check-table.html
http://dev.mysql.com/doc/refman/6.0/en/check-table.html
http://bugs.mysql.com/29461
http://dev.mysql.com/doc/refman/6.0/en/check-table.html
http://bugs.mysql.com/39585
http://bugs.mysql.com/27562
http://dev.mysql.com/doc/refman/6.0/en/check-table.html
http://bugs.mysql.com/39585
http://bugs.mysql.com/29461
http://dev.mysql.com/doc/refman/6.0/en/check-table.html
http://bugs.mysql.com/39585
http://bugs.mysql.com/27562
http://dev.mysql.com/doc/refman/6.0/en/check-table.html
http://bugs.mysql.com/39585
http://bugs.mysql.com/27877
http://dev.mysql.com/doc/refman/6.0/en/check-table.html
http://bugs.mysql.com/40053
http://dev.mysql.com/doc/refman/6.0/en/check-table.html
http://bugs.mysql.com/40054
http://bugs.mysql.com/33452
http://dev.mysql.com/doc/refman/6.0/en/check-table.html
http://bugs.mysql.com/40054
http://bugs.mysql.com/27877
http://dev.mysql.com/doc/refman/6.0/en/check-table.html
http://bugs.mysql.com/40053
http://bugs.mysql.com/25420

gb2312_chinese_ci: '~' TILDE; gbk_chinese_ci: '~' TILDE

Affected tables can be detected by CHECK TABLE ... FOR UPGRADE as of MySQL 6.0.9 (see Bug#40054).

12.4. Rebuilding or Repairing Tables or Indexes
This section describes how to rebuild a table. This can be necessitated by changes to MySQL such as how data types are handled or
changes to character set handling. For example, an error in a collation might have been corrected, necessitating a table rebuild to re-
build the indexes for character columns that use the collation. It might also be that a table repair or upgrade should be done as in-
dicated by a table check operation such as that performed by CHECK TABLE, mysqlcheck, or mysql_upgrade.

Methods for rebuilding a table include dumping and reloading it, or using ALTER TABLE or REPAIR TABLE.

Note

If you are rebuilding tables because a different version of MySQL will not handle them after a binary upgrade or
downgrade, you must use the dump-and-reload method. Dump the tables before upgrading or downgrading (using
your original version of MySQL), and reload the tables after upgrading or downgrading (after installing the new ver-
sion).

If you use the dump-and-reload method of rebuilding tables only for the purpose of rebuilding indexes, you can per-
form the dump either before or after upgrading or downgrading. Reloading still must be done afterward.

To re-create a table by dumping and reloading it, use mysqldump to create a dump file and mysql to reload the file:

shell> mysqldump db_name t1 > dump.sql
shell> mysql db_name < dump.sql

To recreate all the tables in a single database, specify the database name without any following table name:

shell> mysqldump db_name > dump.sql
shell> mysql db_name < dump.sql

To recreate all tables in all databases, use the --all-databases option:

shell> mysqldump --all-databases > dump.sql
shell> mysql < dump.sql

To rebuild a table with ALTER TABLE, use a statement that “changes” the table to use the storage engine that it already has. For
example, if t1 is a MyISAM table, use this statement:

mysql> ALTER TABLE t1 ENGINE = MyISAM;

If you are not sure which storage engine to specify in the ALTER TABLE statement, use SHOW CREATE TABLE to display the
table definition.

If you must rebuild a table because a table checking operation indicates that the table is corrupt or needs an upgrade, you can use
REPAIR TABLE if that statement supports the table's storage engine. For example, to repair a MyISAM table, use this statement:

mysql> REPAIR TABLE t1;

For storage engines such as InnoDB that REPAIR TABLE does not support, use mysqldump to create a dump file and mysql
to reload the file, as described earlier.

For specifics about which storage engines REPAIR TABLE supports, see REPAIR TABLE Syntax.

12.5. Copying MySQL Databases to Another Machine
You can copy the .frm, .MYI, and .MYD files for MyISAM tables between different architectures that support the same floating-
point format. (MySQL takes care of any byte-swapping issues.) See The MyISAM Storage Engine.

In cases where you need to transfer databases between different architectures, you can use mysqldump to create a file containing
SQL statements. You can then transfer the file to the other machine and feed it as input to the mysql client.

Use mysqldump --help to see what options are available.

The easiest (although not the fastest) way to move a database between two machines is to run the following commands on the ma-

Upgrading or Downgrading MySQL

91

http://dev.mysql.com/doc/refman/6.0/en/check-table.html
http://bugs.mysql.com/40054
http://dev.mysql.com/doc/refman/6.0/en/alter-table.html
http://dev.mysql.com/doc/refman/6.0/en/repair-table.html
http://dev.mysql.com/doc/refman/6.0/en/mysqldump.html#option_mysqldump_all-databases
http://dev.mysql.com/doc/refman/6.0/en/alter-table.html
http://dev.mysql.com/doc/refman/6.0/en/alter-table.html
http://dev.mysql.com/doc/refman/6.0/en/show-create-table.html
http://dev.mysql.com/doc/refman/6.0/en/repair-table.html
http://dev.mysql.com/doc/refman/6.0/en/repair-table.html
http://dev.mysql.com/doc/refman/6.0/en/repair-table.html
http://dev.mysql.com/doc/refman/6.0/en/repair-table.html
http://dev.mysql.com/doc/refman/6.0/en/myisam-storage-engine.html

chine on which the database is located:

shell> mysqladmin -h 'other_hostname' create db_name
shell> mysqldump db_name | mysql -h 'other_hostname' db_name

If you want to copy a database from a remote machine over a slow network, you can use these commands:

shell> mysqladmin create db_name
shell> mysqldump -h 'other_hostname' --compress db_name | mysql db_name

You can also store the dump in a file, transfer the file to the target machine, and then load the file into the database there. For ex-
ample, you can dump a database to a compressed file on the source machine like this:

shell> mysqldump --quick db_name | gzip > db_name.gz

Transfer the file containing the database contents to the target machine and run these commands there:

shell> mysqladmin create db_name
shell> gunzip < db_name.gz | mysql db_name

You can also use mysqldump and mysqlimport to transfer the database. For large tables, this is much faster than simply using
mysqldump. In the following commands, DUMPDIR represents the full path name of the directory you use to store the output
from mysqldump.

First, create the directory for the output files and dump the database:

shell> mkdir DUMPDIR
shell> mysqldump --tab=DUMPDIR db_name

Then transfer the files in the DUMPDIR directory to some corresponding directory on the target machine and load the files into
MySQL there:

shell> mysqladmin create db_name # create database
shell> cat DUMPDIR/*.sql | mysql db_name # create tables in database
shell> mysqlimport db_name DUMPDIR/*.txt # load data into tables

Do not forget to copy the mysql database because that is where the grant tables are stored. You might have to run commands as
the MySQL root user on the new machine until you have the mysql database in place.

After you import the mysql database on the new machine, execute mysqladmin flush-privileges so that the server re-
loads the grant table information.

Upgrading or Downgrading MySQL

92

Chapter 13. Operating System-Specific Notes

13.1. Linux Notes
This section discusses issues that have been found to occur on Linux. The first few subsections describe general operating system-
related issues, problems that can occur when using binary or source distributions, and post-installation issues. The remaining sub-
sections discuss problems that occur with Linux on specific platforms.

Note that most of these problems occur on older versions of Linux. If you are running a recent version, you may see none of them.

13.1.1. Linux Operating System Notes
MySQL needs at least Linux version 2.0.

Warning

We have seen some strange problems with Linux 2.2.14 and MySQL on SMP systems. We also have reports from
some MySQL users that they have encountered serious stability problems using MySQL with kernel 2.2.14. If you are
using this kernel, you should upgrade to 2.2.19 (or newer) or to a 2.4 kernel. If you have a multiple-CPU box, you
should seriously consider using 2.4 because it gives you a significant speed boost. Your system should be more stable.

When using LinuxThreads, you should see a minimum of three mysqld processes running. These are in fact threads. There is one
thread for the LinuxThreads manager, one thread to handle connections, and one thread to handle alarms and signals.

13.1.2. Linux Binary Distribution Notes
The Linux-Intel binary and RPM releases of MySQL are configured for the highest possible speed. We are always trying to use the
fastest stable compiler available.

The binary release is linked with -static, which means you do not normally need to worry about which version of the system
libraries you have. You need not install LinuxThreads, either. A program linked with -static is slightly larger than a dynamic-
ally linked program, but also slightly faster (3-5%). However, one problem with a statically linked program is that you can't use
user-defined functions (UDFs). If you are going to write or use UDFs (this is something for C or C++ programmers only), you must
compile MySQL yourself using dynamic linking.

A known issue with binary distributions is that on older Linux systems that use libc (such as Red Hat 4.x or Slackware), you get
some (non-fatal) issues with host name resolution. If your system uses libc rather than glibc2, you probably will encounter
some difficulties with host name resolution and getpwnam(). This happens because glibc (unfortunately) depends on some ex-
ternal libraries to implement host name resolution and getpwent(), even when compiled with -static. These problems mani-
fest themselves in two ways:

• You may see the following error message when you run mysql_install_db:

Sorry, the host 'xxxx' could not be looked up

You can deal with this by executing mysql_install_db --force, which does not execute the resolveip test in
mysql_install_db. The downside is that you cannot use host names in the grant tables: except for localhost, you must
use IP numbers instead. If you are using an old version of MySQL that does not support --force, you must manually remove
the resolveip test in mysql_install_db using a text editor.

• You also may see the following error when you try to run mysqld with the --user option:

getpwnam: No such file or directory

To work around this problem, start mysqld by using the su command rather than by specifying the --user option. This
causes the system itself to change the user ID of the mysqld process so that mysqld need not do so.

Another solution, which solves both problems, is not to use a binary distribution. Obtain a MySQL source distribution (in RPM or
tar.gz format) and install that instead.

On some Linux 2.2 versions, you may get the error Resource temporarily unavailable when clients make a great
many new connections to a mysqld server over TCP/IP. The problem is that Linux has a delay between the time that you close a
TCP/IP socket and the time that the system actually frees it. There is room for only a finite number of TCP/IP slots, so you en-
counter the resource-unavailable error if clients attempt too many new TCP/IP connections over a short period of time. For ex-
ample, you may see the error when you run the MySQL test-connect benchmark over TCP/IP.

93

http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_user
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_user

We have inquired about this problem a few times on different Linux mailing lists but have never been able to find a suitable resolu-
tion. The only known “fix” is for clients to use persistent connections, or, if you are running the database server and clients on the
same machine, to use Unix socket file connections rather than TCP/IP connections.

13.1.3. Linux Source Distribution Notes
The following notes regarding glibc apply only to the situation when you build MySQL yourself. If you are running Linux on an
x86 machine, in most cases it is much better for you to use our binary. We link our binaries against the best patched version of
glibc we can find and with the best compiler options, in an attempt to make it suitable for a high-load server. For a typical user,
even for setups with a lot of concurrent connections or tables exceeding the 2GB limit, our binary is the best choice in most cases.
After reading the following text, if you are in doubt about what to do, try our binary first to determine whether it meets your needs.
If you discover that it is not good enough, you may want to try your own build. In that case, we would appreciate a note about it so
that we can build a better binary next time.

MySQL uses LinuxThreads on Linux. If you are using an old Linux version that doesn't have glibc2, you must install
LinuxThreads before trying to compile MySQL. You can obtain LinuxThreads from
http://dev.mysql.com/downloads/os-linux.html.

Note that glibc versions before and including version 2.1.1 have a fatal bug in pthread_mutex_timedwait() handling,
which is used when INSERT DELAYED statements are issued. We recommend that you not use INSERT DELAYED before up-
grading glibc.

Note that Linux kernel and the LinuxThread library can by default handle a maximum of 1,024 threads. If you plan to have more
than 1,000 concurrent connections, you need to make some changes to LinuxThreads, as follows:

• Increase PTHREAD_THREADS_MAX in sysdeps/unix/sysv/linux/bits/local_lim.h to 4096 and decrease
STACK_SIZE in linuxthreads/internals.h to 256KB. The paths are relative to the root of glibc. (Note that
MySQL is not stable with 600-1000 connections if STACK_SIZE is the default of 2MB.)

• Recompile LinuxThreads to produce a new libpthread.a library, and relink MySQL against it.

There is another issue that greatly hurts MySQL performance, especially on SMP systems. The mutex implementation in
LinuxThreads in glibc 2.1 is very poor for programs with many threads that hold the mutex only for a short time. This produces a
paradoxical result: If you link MySQL against an unmodified LinuxThreads, removing processors from an SMP actually improves
MySQL performance in many cases. We have made a patch available for glibc 2.1.3 to correct this behavior (ht-
tp://dev.mysql.com/Downloads/Linux/linuxthreads-2.1-patch).

With glibc 2.2.2, MySQL uses the adaptive mutex, which is much better than even the patched one in glibc 2.1.3. Be warned,
however, that under some conditions, the current mutex code in glibc 2.2.2 overspins, which hurts MySQL performance. The
likelihood that this condition occurs can be reduced by re-nicing the mysqld process to the highest priority. We have also been
able to correct the overspin behavior with a patch, available at http://dev.mysql.com/Downloads/Linux/linuxthreads-2.2.2.patch. It
combines the correction of overspin, maximum number of threads, and stack spacing all in one. You need to apply it in the
linuxthreads directory with patch -p0 </tmp/linuxthreads-2.2.2.patch. We hope it is included in some form
in future releases of glibc 2.2. In any case, if you link against glibc 2.2.2, you still need to correct STACK_SIZE and
PTHREAD_THREADS_MAX. We hope that the defaults is corrected to some more acceptable values for high-load MySQL setup in
the future, so that the commands needed to produce your own build can be reduced to ./configure; make; make in-
stall.

We recommend that you use these patches to build a special static version of libpthread.a and use it only for statically linking
against MySQL. We know that these patches are safe for MySQL and significantly improve its performance, but we cannot say
anything about their effects on other applications. If you link other applications that require LinuxThreads against the patched static
version of the library, or build a patched shared version and install it on your system, you do so at your own risk.

If you experience any strange problems during the installation of MySQL, or with some common utilities hanging, it is very likely
that they are either library or compiler related. If this is the case, using our binary resolves them.

If you link your own MySQL client programs, you may see the following error at runtime:

ld.so.1: fatal: libmysqlclient.so.#:
open failed: No such file or directory

This problem can be avoided by one of the following methods:

• Link clients with the -Wl,r/full/path/to/libmysqlclient.so flag rather than with -Lpath).

• Copy libmysqclient.so to /usr/lib.

Operating System-Specific Notes

94

http://dev.mysql.com/downloads/os-linux.html
http://dev.mysql.com/doc/refman/6.0/en/insert-delayed.html
http://dev.mysql.com/doc/refman/6.0/en/insert-delayed.html
http://dev.mysql.com/Downloads/Linux/linuxthreads-2.1-patch
http://dev.mysql.com/Downloads/Linux/linuxthreads-2.1-patch
http://dev.mysql.com/Downloads/Linux/linuxthreads-2.2.2.patch

• Add the path name of the directory where libmysqlclient.so is located to the LD_RUN_PATH environment variable be-
fore running your client.

If you are using the Fujitsu compiler (fcc/FCC), you may have some problems compiling MySQL because the Linux header files
are very gcc oriented. The following configure line should work with fcc/FCC:

CC=fcc CFLAGS="-O -K fast -K lib -K omitfp -Kpreex -D_GNU_SOURCE \
-DCONST=const -DNO_STRTOLL_PROTO" \

CXX=FCC CXXFLAGS="-O -K fast -K lib \
-K omitfp -K preex --no_exceptions --no_rtti -D_GNU_SOURCE \
-DCONST=const -Dalloca=__builtin_alloca -DNO_STRTOLL_PROTO \
'-D_EXTERN_INLINE=static __inline'" \

./configure \
--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static --disable-shared \
--with-low-memory

13.1.4. Linux Post-Installation Notes
mysql.server can be found in the support-files directory under the MySQL installation directory or in a MySQL source
tree. You can install it as /etc/init.d/mysql for automatic MySQL startup and shutdown. See Section 11.2.2, “Starting and
Stopping MySQL Automatically”.

If MySQL cannot open enough files or connections, it may be that you have not configured Linux to handle enough files.

In Linux 2.2 and onward, you can check the number of allocated file handles as follows:

shell> cat /proc/sys/fs/file-max
shell> cat /proc/sys/fs/dquot-max
shell> cat /proc/sys/fs/super-max

If you have more than 16MB of memory, you should add something like the following to your init scripts (for example, /
etc/init.d/boot.local on SuSE Linux):

echo 65536 > /proc/sys/fs/file-max
echo 8192 > /proc/sys/fs/dquot-max
echo 1024 > /proc/sys/fs/super-max

You can also run the echo commands from the command line as root, but these settings are lost the next time your computer re-
starts.

Alternatively, you can set these parameters on startup by using the sysctl tool, which is used by many Linux distributions
(including SuSE Linux 8.0 and later). Put the following values into a file named /etc/sysctl.conf:

Increase some values for MySQL
fs.file-max = 65536
fs.dquot-max = 8192
fs.super-max = 1024

You should also add the following to /etc/my.cnf:

[mysqld_safe]
open-files-limit=8192

This should allow the server a limit of 8,192 for the combined number of connections and open files.

The STACK_SIZE constant in LinuxThreads controls the spacing of thread stacks in the address space. It needs to be large enough
so that there is plenty of room for each individual thread stack, but small enough to keep the stack of some threads from running in-
to the global mysqld data. Unfortunately, as we have experimentally discovered, the Linux implementation of mmap() success-
fully unmaps a mapped region if you ask it to map out an address currently in use, zeroing out the data on the entire page instead of
returning an error. So, the safety of mysqld or any other threaded application depends on the “gentlemanly” behavior of the code
that creates threads. The user must take measures to make sure that the number of running threads at any given time is sufficiently
low for thread stacks to stay away from the global heap. With mysqld, you should enforce this behavior by setting a reasonable
value for the max_connections variable.

If you build MySQL yourself, you can patch LinuxThreads for better stack use. See Section 13.1.3, “Linux Source Distribution
Notes”. If you do not want to patch LinuxThreads, you should set max_connections to a value no higher than 500. It should be
even less if you have a large key buffer, large heap tables, or some other things that make mysqld allocate a lot of memory, or if
you are running a 2.2 kernel with a 2GB patch. If you are using our binary or RPM version, you can safely set
max_connections at 1500, assuming no large key buffer or heap tables with lots of data. The more you reduce STACK_SIZE
in LinuxThreads the more threads you can safely create. We recommend values between 128KB and 256KB.

Operating System-Specific Notes

95

http://dev.mysql.com/doc/refman/6.0/en/server-system-variables.html#sysvar_max_connections
http://dev.mysql.com/doc/refman/6.0/en/server-system-variables.html#sysvar_max_connections
http://dev.mysql.com/doc/refman/6.0/en/server-system-variables.html#sysvar_max_connections

If you use a lot of concurrent connections, you may suffer from a “feature” in the 2.2 kernel that attempts to prevent fork bomb at-
tacks by penalizing a process for forking or cloning a child. This causes MySQL not to scale well as you increase the number of
concurrent clients. On single-CPU systems, we have seen this manifest as very slow thread creation; it may take a long time to con-
nect to MySQL (as long as one minute), and it may take just as long to shut it down. On multiple-CPU systems, we have observed
a gradual drop in query speed as the number of clients increases. In the process of trying to find a solution, we have received a ker-
nel patch from one of our users who claimed it helped for his site. This patch is available at ht-
tp://dev.mysql.com/Downloads/Patches/linux-fork.patch. We have done rather extensive testing of this patch on both development
and production systems. It has significantly improved MySQL performance without causing any problems and we recommend it to
our users who still run high-load servers on 2.2 kernels.

This issue has been fixed in the 2.4 kernel, so if you are not satisfied with the current performance of your system, rather than
patching your 2.2 kernel, it might be easier to upgrade to 2.4. On SMP systems, upgrading also gives you a nice SMP boost in addi-
tion to fixing the fairness bug.

We have tested MySQL on the 2.4 kernel on a two-CPU machine and found MySQL scales much better. There was virtually no
slowdown on query throughput all the way up to 1,000 clients, and the MySQL scaling factor (computed as the ratio of maximum
throughput to the throughput for one client) was 180%. We have observed similar results on a four-CPU system: Virtually no slow-
down as the number of clients was increased up to 1,000, and a 300% scaling factor. Based on these results, for a high-load SMP
server using a 2.2 kernel, we definitely recommend upgrading to the 2.4 kernel at this point.

We have discovered that it is essential to run the mysqld process with the highest possible priority on the 2.4 kernel to achieve
maximum performance. This can be done by adding a renice -20 $$ command to mysqld_safe. In our testing on a four-
CPU machine, increasing the priority resulted in a 60% throughput increase with 400 clients.

We are currently also trying to collect more information on how well MySQL performs with a 2.4 kernel on four-way and eight-
way systems. If you have access such a system and have done some benchmarks, please send an email message to
<benchmarks@mysql.com> with the results. We will review them for inclusion in the manual.

If you see a dead mysqld server process with ps, this usually means that you have found a bug in MySQL or you have a corrup-
ted table. See What to Do If MySQL Keeps Crashing.

To get a core dump on Linux if mysqld dies with a SIGSEGV signal, you can start mysqld with the --core-file option.
Note that you also probably need to raise the core file size by adding ulimit -c 1000000 to mysqld_safe or starting
mysqld_safe with --core-file-size=1000000. See mysqld_safe.

13.1.5. Linux x86 Notes
MySQL requires libc 5.4.12 or newer. It is known to work with libc 5.4.46. glibc 2.0.6 and later should also work. There
have been some problems with the glibc RPMs from Red Hat, so if you have problems, check whether there are any updates. The
glibc 2.0.7-19 and 2.0.7-29 RPMs are known to work.

If you are using Red Hat 8.0 or a new glibc 2.2.x library, you may see mysqld die in gethostbyaddr(). This happens be-
cause the new glibc library requires a stack size greater than 128KB for this call. To fix the problem, start mysqld with the -
-thread-stack=192K option. (Use -O thread_stack=192K before MySQL 4.) This stack size is the default on MySQL
4.0.10 and above, so you should not see the problem.

If you are using gcc 3.0 and above to compile MySQL, you must install the libstdc++v3 library before compiling MySQL; if
you don't do this, you get an error about a missing __cxa_pure_virtual symbol during linking.

On some older Linux distributions, configure may produce an error like this:

Syntax error in sched.h. Change _P to __P in the
/usr/include/sched.h file.
See the Installation chapter in the Reference Manual.

Just do what the error message says. Add an extra underscore to the _P macro name that has only one underscore, and then try
again.

You may get some warnings when compiling. Those shown here can be ignored:

mysqld.cc -o objs-thread/mysqld.o
mysqld.cc: In function `void init_signals()':
mysqld.cc:315: warning: assignment of negative value `-1' to
`long unsigned int'
mysqld.cc: In function `void * signal_hand(void *)':
mysqld.cc:346: warning: assignment of negative value `-1' to
`long unsigned int'

If mysqld always dumps core when it starts, the problem may be that you have an old /lib/libc.a. Try renaming it, and then
remove sql/mysqld and do a new make install and try again. This problem has been reported on some Slackware installa-
tions.

Operating System-Specific Notes

96

http://dev.mysql.com/Downloads/Patches/linux-fork.patch
http://dev.mysql.com/Downloads/Patches/linux-fork.patch
http://dev.mysql.com/doc/refman/6.0/en/administration-issues.html#crashing
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_core-file
http://dev.mysql.com/doc/refman/6.0/en/mysqld-safe.html#option_mysqld_safe_core-file-size
http://dev.mysql.com/doc/refman/6.0/en/mysqld-safe.html
http://dev.mysql.com/doc/refman/6.0/en/server-system-variables.html#sysvar_thread_stack
http://dev.mysql.com/doc/refman/6.0/en/server-system-variables.html#sysvar_thread_stack

If you get the following error when linking mysqld, it means that your libg++.a is not installed correctly:

/usr/lib/libc.a(putc.o): In function `_IO_putc':
putc.o(.text+0x0): multiple definition of `_IO_putc'

You can avoid using libg++.a by running configure like this:

shell> CXX=gcc ./configure

13.1.6. Linux SPARC Notes
In some implementations, readdir_r() is broken. The symptom is that the SHOW DATABASES statement always returns an
empty set. This can be fixed by removing HAVE_READDIR_R from config.h after configuring and before compiling.

13.1.7. Linux Alpha Notes
We have tested MySQL 6.0 on Alpha with our benchmarks and test suite, and it appears to work well.

We currently build the MySQL binary packages on SuSE Linux 7.0 for AXP, kernel 2.4.4-SMP, Compaq C compiler (V6.2-505)
and Compaq C++ compiler (V6.3-006) on a Compaq DS20 machine with an Alpha EV6 processor.

You can find the preceding compilers at http://www.support.compaq.com/alpha-tools/. By using these compilers rather than gcc,
we get about 9-14% better MySQL performance.

For MySQL on Alpha, we use the -arch generic flag to our compile options, which ensures that the binary runs on all Alpha
processors. We also compile statically to avoid library problems. The configure command looks like this:

CC=ccc CFLAGS="-fast -arch generic" CXX=cxx \
CXXFLAGS="-fast -arch generic -noexceptions -nortti" \
./configure --prefix=/usr/local/mysql --disable-shared \

--with-extra-charsets=complex --enable-thread-safe-client \
--with-mysqld-ldflags=-non_shared --with-client-ldflags=-non_shared

Some known problems when running MySQL on Linux-Alpha:

• Debugging threaded applications like MySQL does not work with gdb 4.18. You should use gdb 5.1 instead.

• If you try linking mysqld statically when using gcc, the resulting image dumps core at startup time. In other words, do not
use --with-mysqld-ldflags=-all-static with gcc.

13.1.8. Linux PowerPC Notes
MySQL should work on MkLinux with the newest glibc package (tested with glibc 2.0.7).

13.1.9. Linux MIPS Notes
To get MySQL to work on Qube2 (Linux Mips), you need the newest glibc libraries. glibc-2.0.7-29C2 is known to work.
You must also use gcc 2.95.2 or newer).

13.1.10. Linux IA-64 Notes
To get MySQL to compile on Linux IA-64, we use the following configure command for building with gcc 2.96:

CC=gcc \
CFLAGS="-O3 -fno-omit-frame-pointer" \
CXX=gcc \
CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors \

-fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql \
"--with-comment=Official MySQL binary" \
--with-extra-charsets=complex

On IA-64, the MySQL client binaries use shared libraries. This means that if you install our binary distribution at a location other
than /usr/local/mysql, you need to add the path of the directory where you have libmysqlclient.so installed either to
the /etc/ld.so.conf file or to the value of your LD_LIBRARY_PATH environment variable.

See Problems Linking to the MySQL Client Library.

Operating System-Specific Notes

97

http://dev.mysql.com/doc/refman/6.0/en/show-databases.html
http://www.support.compaq.com/alpha-tools/
http://dev.mysql.com/doc/refman/6.0/en/installation-issues.html#link-errors

13.1.11. SELinux Notes
RHEL4 comes with SELinux, which supports tighter access control for processes. If SELinux is enabled (SELINUX in /
etc/selinux/config is set to enforcing, SELINUXTYPE is set to either targeted or strict), you might encounter
problems installing MySQL AB RPM packages.

Red Hat has an update that solves this. It involves an update of the “security policy” specification to handle the install structure of
the RPMs provided by MySQL AB. For further information, see https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=167551 and
http://rhn.redhat.com/errata/RHBA-2006-0049.html.

The preceding discussion applies only to RHEL4. The patch is unnecessary for RHEL5.

13.2. Mac OS X Notes
On Mac OS X, tar cannot handle long file names. If you need to unpack a .tar.gz distribution, use gnutar instead.

13.2.1. Mac OS X 10.x (Darwin)
MySQL should work without major problems on Mac OS X 10.x (Darwin).

Known issues:

• If you have problems with performance under heavy load, try using the --skip-thread-priority option to mysqld.
This runs all threads with the same priority. On Mac OS X, this gives better performance, at least until Apple fixes its thread
scheduler.

• The connection times (wait_timeout, interactive_timeout and net_read_timeout) values are not honored.

This is probably a signal handling problem in the thread library where the signal doesn't break a pending read and we hope that
a future update to the thread libraries will fix this.

Our binary for Mac OS X is compiled on Darwin 6.3 with the following configure line:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc \
CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors \

-fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql \
--with-extra-charsets=complex --enable-thread-safe-client \
--enable-local-infile --disable-shared

See Chapter 5, Installing MySQL on Mac OS X.

13.2.2. Mac OS X Server 1.2 (Rhapsody)
For current versions of Mac OS X Server, no operating system changes are necessary before compiling MySQL. Compiling for the
Server platform is the same as for the client version of Mac OS X.

For older versions (Mac OS X Server 1.2, a.k.a. Rhapsody), you must first install a pthread package before trying to configure
MySQL.

See Chapter 5, Installing MySQL on Mac OS X.

13.3. Solaris Notes
For information about installing MySQL on Solaris using PKG distributions, see Chapter 6, Installing MySQL on Solaris.

On Solaris, you may run into trouble even before you get the MySQL distribution unpacked, as the Solaris tar cannot handle long
file names. This means that you may see errors when you try to unpack MySQL.

If this occurs, you must use GNU tar (gtar) to unpack the distribution.

Sun native threads work only on Solaris 2.5 and higher. For Solaris 2.4 and earlier, MySQL automatically uses MIT-pthreads. See
Section 10.5, “MIT-pthreads Notes”.

If you get the following error from configure, it means that you have something wrong with your compiler installation:

checking for restartable system calls... configure: error can not
run test programs while cross compiling

Operating System-Specific Notes

98

https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=167551
http://rhn.redhat.com/errata/RHBA-2006-0049.html
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_skip-thread-priority
http://dev.mysql.com/doc/refman/6.0/en/server-system-variables.html#sysvar_wait_timeout
http://dev.mysql.com/doc/refman/6.0/en/server-system-variables.html#sysvar_interactive_timeout
http://dev.mysql.com/doc/refman/6.0/en/server-system-variables.html#sysvar_net_read_timeout

In this case, you should upgrade your compiler to a newer version. You may also be able to solve this problem by inserting the fol-
lowing row into the config.cache file:

ac_cv_sys_restartable_syscalls=${ac_cv_sys_restartable_syscalls='no'}

If you are using Solaris on a SPARC, the recommended compiler is gcc 2.95.2 or 3.2. You can find this at http://gcc.gnu.org/.
Note that gcc 2.8.1 does not work reliably on SPARC.

The recommended configure line when using gcc 2.95.2 is:

CC=gcc CFLAGS="-O3" \
CXX=gcc CXXFLAGS="-O3 -felide-constructors -fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql --with-low-memory \

--enable-assembler

If you have an UltraSPARC system, you can get 4% better performance by adding -mcpu=v8 -Wa,-xarch=v8plusa to the
CFLAGS and CXXFLAGS environment variables.

If you have Sun's Forte 5.0 (or newer) compiler, you can run configure like this:

CC=cc CFLAGS="-Xa -fast -native -xstrconst -mt" \
CXX=CC CXXFLAGS="-noex -mt" \
./configure --prefix=/usr/local/mysql --enable-assembler

To create a 64-bit binary with Sun's Forte compiler, use the following configuration options:

CC=cc CFLAGS="-Xa -fast -native -xstrconst -mt -xarch=v9" \
CXX=CC CXXFLAGS="-noex -mt -xarch=v9" ASFLAGS="-xarch=v9" \
./configure --prefix=/usr/local/mysql --enable-assembler

To create a 64-bit Solaris binary using gcc, add -m64 to CFLAGS and CXXFLAGS and remove --enable-assembler from
the configure line.

In the MySQL benchmarks, we obtained a 4% speed increase on UltraSPARC when using Forte 5.0 in 32-bit mode, as compared to
using gcc 3.2 with the -mcpu flag.

If you create a 64-bit mysqld binary, it is 4% slower than the 32-bit binary, but can handle more threads and memory.

When using Solaris 10 for x86_64, you should mount any file systems on which you intend to store InnoDB files with the for-
cedirectio option. (By default mounting is done without this option.) Failing to do so will cause a significant drop in perform-
ance when using the InnoDB storage engine on this platform.

If you get a problem with fdatasync or sched_yield, you can fix this by adding LIBS=-lrt to the configure line

For compilers older than WorkShop 5.3, you might have to edit the configure script. Change this line:

#if !defined(__STDC__) || __STDC__ != 1

To this:

#if !defined(__STDC__)

If you turn on __STDC__ with the -Xc option, the Sun compiler can't compile with the Solaris pthread.h header file. This is a
Sun bug (broken compiler or broken include file).

If mysqld issues the following error message when you run it, you have tried to compile MySQL with the Sun compiler without
enabling the -mt multi-thread option:

libc internal error: _rmutex_unlock: rmutex not held

Add -mt to CFLAGS and CXXFLAGS and recompile.

If you are using the SFW version of gcc (which comes with Solaris 8), you must add /opt/sfw/lib to the environment vari-
able LD_LIBRARY_PATH before running configure.

If you are using the gcc available from sunfreeware.com, you may have many problems. To avoid this, you should recompile
gcc and GNU binutils on the machine where you are running them.

If you get the following error when compiling MySQL with gcc, it means that your gcc is not configured for your version of Sol-
aris:

Operating System-Specific Notes

99

http://gcc.gnu.org/

shell> gcc -O3 -g -O2 -DDBUG_OFF -o thr_alarm ...
./thr_alarm.c: In function `signal_hand':
./thr_alarm.c:556: too many arguments to function `sigwait'

The proper thing to do in this case is to get the newest version of gcc and compile it with your current gcc compiler. At least for
Solaris 2.5, almost all binary versions of gcc have old, unusable include files that break all programs that use threads, and possibly
other programs as well.

Solaris does not provide static versions of all system libraries (libpthreads and libdl), so you cannot compile MySQL with
--static. If you try to do so, you get one of the following errors:

ld: fatal: library -ldl: not found
undefined reference to `dlopen'
cannot find -lrt

If you link your own MySQL client programs, you may see the following error at runtime:

ld.so.1: fatal: libmysqlclient.so.#:
open failed: No such file or directory

This problem can be avoided by one of the following methods:

• Link clients with the -Wl,r/full/path/to/libmysqlclient.so flag rather than with -Lpath).

• Copy libmysqclient.so to /usr/lib.

• Add the path name of the directory where libmysqlclient.so is located to the LD_RUN_PATH environment variable be-
fore running your client.

If you have problems with configure trying to link with -lz when you don't have zlib installed, you have two options:

• If you want to be able to use the compressed communication protocol, you need to get and install zlib from ftp.gnu.org.

• Run configure with the --with-named-z-libs=no option when building MySQL.

If you are using gcc and have problems with loading user-defined functions (UDFs) into MySQL, try adding -lgcc to the link
line for the UDF.

If you would like MySQL to start automatically, you can copy support-files/mysql.server to /etc/init.d and cre-
ate a symbolic link to it named /etc/rc3.d/S99mysql.server.

If too many processes try to connect very rapidly to mysqld, you should see this error in the MySQL log:

Error in accept: Protocol error

You might try starting the server with the --back_log=50 option as a workaround for this. (Use -O back_log=50 before
MySQL 4.)

Solaris doesn't support core files for setuid() applications, so you can't get a core file from mysqld if you are using the -
-user option.

13.3.1. Solaris 2.7/2.8 Notes
Normally, you can use a Solaris 2.6 binary on Solaris 2.7 and 2.8. Most of the Solaris 2.6 issues also apply for Solaris 2.7 and 2.8.

MySQL should be able to detect new versions of Solaris automatically and enable workarounds for the following problems.

Solaris 2.7 / 2.8 has some bugs in the include files. You may see the following error when you use gcc:

/usr/include/widec.h:42: warning: `getwc' redefined
/usr/include/wchar.h:326: warning: this is the location of the previous
definition

If this occurs, you can fix the problem by copying /usr/include/widec.h to
.../lib/gcc-lib/os/gcc-version/include and changing line 41 from this:

#if !defined(lint) && !defined(__lint)

Operating System-Specific Notes

100

http://dev.mysql.com/doc/refman/6.0/en/server-system-variables.html#sysvar_back_log
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_user
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_user

To this:

#if !defined(lint) && !defined(__lint) && !defined(getwc)

Alternatively, you can edit /usr/include/widec.h directly. Either way, after you make the fix, you should remove con-
fig.cache and run configure again.

If you get the following errors when you run make, it is because configure didn't detect the curses.h file (probably because
of the error in /usr/include/widec.h):

In file included from mysql.cc:50:
/usr/include/term.h:1060: syntax error before `,'
/usr/include/term.h:1081: syntax error before `;'

The solution to this problem is to do one of the following:

• Configure with CFLAGS=-DHAVE_CURSES_H CXXFLAGS=-DHAVE_CURSES_H ./configure.

• Edit /usr/include/widec.h as indicated in the preceding discussion and re-run configure.

• Remove the #define HAVE_TERM line from the config.h file and run make again.

If your linker cannot find -lz when linking client programs, the problem is probably that your libz.so file is installed in /
usr/local/lib. You can fix this problem by one of the following methods:

• Add /usr/local/lib to LD_LIBRARY_PATH.

• Add a link to libz.so from /lib.

• If you are using Solaris 8, you can install the optional zlib from your Solaris 8 CD distribution.

• Run configure with the --with-named-z-libs=no option when building MySQL.

13.3.2. Solaris x86 Notes
On Solaris 8 on x86, mysqld dumps core if you remove the debug symbols using strip.

If you are using gcc on Solaris x86 and you experience problems with core dumps under load, you should use the following con-
figure command:

CC=gcc CFLAGS="-O3 -fomit-frame-pointer -DHAVE_CURSES_H" \
CXX=gcc \
CXXFLAGS="-O3 -fomit-frame-pointer -felide-constructors \

-fno-exceptions -fno-rtti -DHAVE_CURSES_H" \
./configure --prefix=/usr/local/mysql

This avoids problems with the libstdc++ library and with C++ exceptions.

If this doesn't help, you should compile a debug version and run it with a trace file or under gdb. See MySQL Internals: Porting.

13.4. BSD Notes
This section provides information about using MySQL on variants of BSD Unix.

13.4.1. FreeBSD Notes
FreeBSD 4.x or newer is recommended for running MySQL, because the thread package is much more integrated. To get a secure
and stable system, you should use only FreeBSD kernels that are marked -RELEASE.

The easiest (and preferred) way to install MySQL is to use the mysql-server and mysql-client ports available at ht-
tp://www.freebsd.org/. Using these ports gives you the following benefits:

• A working MySQL with all optimizations enabled that are known to work on your version of FreeBSD.

Operating System-Specific Notes

101

http://forge.mysql.com/wiki/MySQL_Internals_Porting
http://www.freebsd.org/
http://www.freebsd.org/

• Automatic configuration and build.

• Startup scripts installed in /usr/local/etc/rc.d.

• The ability to use pkg_info -L to see which files are installed.

• The ability to use pkg_delete to remove MySQL if you no longer want it on your machine.

It is recommended you use MIT-pthreads on FreeBSD 2.x, and native threads on FreeBSD 3 and up. It is possible to run with nat-
ive threads on some late 2.2.x versions, but you may encounter problems shutting down mysqld.

Unfortunately, certain function calls on FreeBSD are not yet fully thread-safe. Most notably, this includes the gethostby-
name() function, which is used by MySQL to convert host names into IP addresses. Under certain circumstances, the mysqld
process suddenly causes 100% CPU load and is unresponsive. If you encounter this problem, try to start MySQL using the -
-skip-name-resolve option.

Alternatively, you can link MySQL on FreeBSD 4.x against the LinuxThreads library, which avoids a few of the problems that the
native FreeBSD thread implementation has. For a very good comparison of LinuxThreads versus native threads, see Jeremy Za-
wodny's article FreeBSD or Linux for your MySQL Server? at http://jeremy.zawodny.com/blog/archives/000697.html.

Known problem when using LinuxThreads on FreeBSD is:

• The connection times (wait_timeout, interactive_timeout and net_read_timeout) values are not honored.
The symptom is that persistent connections can hang for a very long time without getting closed down and that a 'kill' for a
thread will not take affect until the thread does it a new command

This is probably a signal handling problem in the thread library where the signal doesn't break a pending read. This is supposed
to be fixed in FreeBSD 5.0

The MySQL build process requires GNU make (gmake) to work. If GNU make is not available, you must install it first before
compiling MySQL.

The recommended way to compile and install MySQL on FreeBSD with gcc (2.95.2 and up) is:

CC=gcc CFLAGS="-O2 -fno-strength-reduce" \
CXX=gcc CXXFLAGS="-O2 -fno-rtti -fno-exceptions \
-felide-constructors -fno-strength-reduce" \
./configure --prefix=/usr/local/mysql --enable-assembler

gmake
gmake install
cd /usr/local/mysql
bin/mysql_install_db --user=mysql
bin/mysqld_safe &

If you notice that configure uses MIT-pthreads, you should read the MIT-pthreads notes. See Section 10.5, “MIT-pthreads
Notes”.

If you get an error from make install that it can't find /usr/include/pthreads, configure didn't detect that you
need MIT-pthreads. To fix this problem, remove config.cache, and then re-run configure with the -
-with-mit-threads option.

Be sure that your name resolver setup is correct. Otherwise, you may experience resolver delays or failures when connecting to
mysqld. Also make sure that the localhost entry in the /etc/hosts file is correct. The file should start with a line similar
to this:

127.0.0.1 localhost localhost.your.domain

FreeBSD is known to have a very low default file handle limit. See 'FILE' NOT FOUND and Similar Errors. Start the server by us-
ing the --open-files-limit option for mysqld_safe, or raise the limits for the mysqld user in /etc/login.conf
and rebuild it with cap_mkdb /etc/login.conf. Also be sure that you set the appropriate class for this user in the password
file if you are not using the default (use chpass mysqld-user-name). See mysqld_safe.

FreeBSD limits the size of a process to 512MB, even if you have much more RAM available on the system. So you may get an er-
ror such as this:

Out of memory (Needed 16391 bytes)

In current versions of FreeBSD (at least 4.x and greater), you may increase this limit by adding the following entries to the /
boot/loader.conf file and rebooting the machine (these are not settings that can be changed at run time with the sysctl

Operating System-Specific Notes

102

http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_skip-name-resolve
http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_skip-name-resolve
http://jeremy.zawodny.com/blog/archives/000697.html
http://dev.mysql.com/doc/refman/6.0/en/server-system-variables.html#sysvar_wait_timeout
http://dev.mysql.com/doc/refman/6.0/en/server-system-variables.html#sysvar_interactive_timeout
http://dev.mysql.com/doc/refman/6.0/en/server-system-variables.html#sysvar_net_read_timeout
http://dev.mysql.com/doc/refman/6.0/en/common-errors.html#not-enough-file-handles
http://dev.mysql.com/doc/refman/6.0/en/mysqld-safe.html#option_mysqld_safe_open-files-limit
http://dev.mysql.com/doc/refman/6.0/en/mysqld-safe.html

command):

kern.maxdsiz="1073741824" # 1GB
kern.dfldsiz="1073741824" # 1GB
kern.maxssiz="134217728" # 128MB

For older versions of FreeBSD, you must recompile your kernel to change the maximum data segment size for a process. In this
case, you should look at the MAXDSIZ option in the LINT config file for more information.

If you get problems with the current date in MySQL, setting the TZ variable should help. See Chapter 14, Environment Variables.

13.4.2. NetBSD Notes
To compile on NetBSD, you need GNU make. Otherwise, the build process fails when make tries to run lint on C++ files.

13.4.3. OpenBSD 2.5 Notes
On OpenBSD 2.5, you can compile MySQL with native threads with the following options:

CFLAGS=-pthread CXXFLAGS=-pthread ./configure --with-mit-threads=no

13.4.4. BSD/OS Version 2.x Notes
If you get the following error when compiling MySQL, your ulimit value for virtual memory is too low:

item_func.h: In method
`Item_func_ge::Item_func_ge(const Item_func_ge &)':
item_func.h:28: virtual memory exhausted
make[2]: *** [item_func.o] Error 1

Try using ulimit -v 80000 and run make again. If this doesn't work and you are using bash, try switching to csh or sh;
some BSDI users have reported problems with bash and ulimit.

If you are using gcc, you may also use have to use the --with-low-memory flag for configure to be able to compile
sql_yacc.cc.

If you get problems with the current date in MySQL, setting the TZ variable should help. See Chapter 14, Environment Variables.

13.4.5. BSD/OS Version 3.x Notes
Upgrade to BSD/OS 3.1. If that is not possible, install BSDIpatch M300-038.

Use the following command when configuring MySQL:

env CXX=shlicc++ CC=shlicc2 \
./configure \

--prefix=/usr/local/mysql \
--localstatedir=/var/mysql \
--without-perl \
--with-unix-socket-path=/var/mysql/mysql.sock

The following is also known to work:

env CC=gcc CXX=gcc CXXFLAGS=-O3 \
./configure \

--prefix=/usr/local/mysql \
--with-unix-socket-path=/var/mysql/mysql.sock

You can change the directory locations if you wish, or just use the defaults by not specifying any locations.

If you have problems with performance under heavy load, try using the --skip-thread-priority option to mysqld. This
runs all threads with the same priority. On BSDI 3.1, this gives better performance, at least until BSDI fixes its thread scheduler.

If you get the error virtual memory exhausted while compiling, you should try using ulimit -v 80000 and running
make again. If this doesn't work and you are using bash, try switching to csh or sh; some BSDI users have reported problems
with bash and ulimit.

13.4.6. BSD/OS Version 4.x Notes
BSDI 4.x has some thread-related bugs. If you want to use MySQL on this, you should install all thread-related patches. At least
M400-023 should be installed.

Operating System-Specific Notes

103

http://dev.mysql.com/doc/refman/6.0/en/server-options.html#option_mysqld_skip-thread-priority

On some BSDI 4.x systems, you may get problems with shared libraries. The symptom is that you can't execute any client pro-
grams, for example, mysqladmin. In this case, you need to reconfigure not to use shared libraries with the -
-disable-shared option to configure.

Some customers have had problems on BSDI 4.0.1 that the mysqld binary after a while can't open tables. This occurs because
some library/system-related bug causes mysqld to change current directory without having asked for that to happen.

The fix is to either upgrade MySQL to at least version 3.23.34 or, after running configure, remove the line #define
HAVE_REALPATH from config.h before running make.

Note that this means that you can't symbolically link a database directories to another database directory or symbolic link a table to
another database on BSDI. (Making a symbolic link to another disk is okay).

13.5. Other Unix Notes

13.5.1. HP-UX Version 10.20 Notes
If you install MySQL using a binary tarball distribution on HP-UX, you may run into trouble even before you get the MySQL dis-
tribution unpacked, as the HP-UX tar cannot handle long file names. This means that you may see errors when you try to unpack
MySQL.

If this occurs, you must use GNU tar (gtar) to unpack the distribution.

There are a couple of small problems when compiling MySQL on HP-UX. We recommend that you use gcc instead of the HP-UX
native compiler, because gcc produces better code.

We recommend using gcc 2.95 on HP-UX. Don't use high optimization flags (such as -O6) because they may not be safe on HP-
UX.

The following configure line should work with gcc 2.95:

CFLAGS="-I/opt/dce/include -fpic" \
CXXFLAGS="-I/opt/dce/include -felide-constructors -fno-exceptions \
-fno-rtti" \
CXX=gcc \
./configure --with-pthread \

--with-named-thread-libs='-ldce' \
--prefix=/usr/local/mysql --disable-shared

The following configure line should work with gcc 3.1:

CFLAGS="-DHPUX -I/opt/dce/include -O3 -fPIC" CXX=gcc \
CXXFLAGS="-DHPUX -I/opt/dce/include -felide-constructors \

-fno-exceptions -fno-rtti -O3 -fPIC" \
./configure --prefix=/usr/local/mysql \

--with-extra-charsets=complex --enable-thread-safe-client \
--enable-local-infile --with-pthread \
--with-named-thread-libs=-ldce --with-lib-ccflags=-fPIC
--disable-shared

13.5.2. HP-UX Version 11.x Notes
If you install MySQL using a binary tarball distribution on HP-UX, you may run into trouble even before you get the MySQL dis-
tribution unpacked, as the HP-UX tar cannot handle long file names. This means that you may see errors when you try to unpack
MySQL.

If this occurs, you must use GNU tar (gtar) to unpack the distribution.

Because of some critical bugs in the standard HP-UX libraries, you should install the following patches before trying to run
MySQL on HP-UX 11.0:

PHKL_22840 Streams cumulative
PHNE_22397 ARPA cumulative

This solves the problem of getting EWOULDBLOCK from recv() and EBADF from accept() in threaded applications.

If you are using gcc 2.95.1 on an unpatched HP-UX 11.x system, you may get the following error:

In file included from /usr/include/unistd.h:11,
from ../include/global.h:125,
from mysql_priv.h:15,
from item.cc:19:

/usr/include/sys/unistd.h:184: declaration of C function ...

Operating System-Specific Notes

104

/usr/include/sys/pthread.h:440: previous declaration ...
In file included from item.h:306,

from mysql_priv.h:158,
from item.cc:19:

The problem is that HP-UX does not define pthreads_atfork() consistently. It has conflicting prototypes in /
usr/include/sys/unistd.h:184 and /usr/include/sys/pthread.h:440.

One solution is to copy /usr/include/sys/unistd.h into mysql/include and edit unistd.h and change it to match
the definition in pthread.h. Look for this line:

extern int pthread_atfork(void (*prepare)(), void (*parent)(),
void (*child)());

Change it to look like this:

extern int pthread_atfork(void (*prepare)(void), void (*parent)(void),
void (*child)(void));

After making the change, the following configure line should work:

CFLAGS="-fomit-frame-pointer -O3 -fpic" CXX=gcc \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti -O3" \
./configure --prefix=/usr/local/mysql --disable-shared

If you are using HP-UX compiler, you can use the following command (which has been tested with cc B.11.11.04):

CC=cc CXX=aCC CFLAGS=+DD64 CXXFLAGS=+DD64 ./configure \
--with-extra-character-set=complex

You can ignore any errors of the following type:

aCC: warning 901: unknown option: `-3': use +help for online
documentation

If you get the following error from configure, verify that you don't have the path to the K&R compiler before the path to the
HP-UX C and C++ compiler:

checking for cc option to accept ANSI C... no
configure: error: MySQL requires an ANSI C compiler (and a C++ compiler).
Try gcc. See the Installation chapter in the Reference Manual.

Another reason for not being able to compile is that you didn't define the +DD64 flags as just described.

Another possibility for HP-UX 11 is to use the MySQL binaries provided at http://dev.mysql.com/downloads/, which we have built
and tested ourselves. We have also received reports that the HP-UX 10.20 binaries supplied by MySQL can be run successfully on
HP-UX 11. If you encounter problems, you should be sure to check your HP-UX patch level.

13.5.3. IBM-AIX notes
Automatic detection of xlC is missing from Autoconf, so a number of variables need to be set before running configure. The
following example uses the IBM compiler:

export CC="xlc_r -ma -O3 -qstrict -qoptimize=3 -qmaxmem=8192 "
export CXX="xlC_r -ma -O3 -qstrict -qoptimize=3 -qmaxmem=8192"
export CFLAGS="-I /usr/local/include"
export LDFLAGS="-L /usr/local/lib"
export CPPFLAGS=$CFLAGS
export CXXFLAGS=$CFLAGS
./configure --prefix=/usr/local \

--localstatedir=/var/mysql \
--sbindir='/usr/local/bin' \
--libexecdir='/usr/local/bin' \
--enable-thread-safe-client \
--enable-large-files

The preceding options are used to compile the MySQL distribution that can be found at http://www-frec.bull.com/.

If you change the -O3 to -O2 in the preceding configure line, you must also remove the -qstrict option. This is a limita-
tion in the IBM C compiler.

If you are using gcc to compile MySQL, you must use the -fno-exceptions flag, because the exception handling in gcc is
not thread-safe! There are also some known problems with IBM's assembler that may cause it to generate bad code when used with

Operating System-Specific Notes

105

http://dev.mysql.com/downloads/
http://www-frec.bull.com/

gcc.

We recommend the following configure line with gcc 2.95 on AIX:

CC="gcc -pipe -mcpu=power -Wa,-many" \
CXX="gcc -pipe -mcpu=power -Wa,-many" \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql --with-low-memory

The -Wa,-many option is necessary for the compile to be successful. IBM is aware of this problem but is in no hurry to fix it be-
cause of the workaround that is available. We don't know if the -fno-exceptions is required with gcc 2.95, but because
MySQL doesn't use exceptions and the option generates faster code, we recommend that you should always use it with gcc.

If you get a problem with assembler code, try changing the -mcpu=xxx option to match your CPU. Typically power2, power,
or powerpc may need to be used. Alternatively, you might need to use 604 or 604e. We are not positive but suspect that power
would likely be safe most of the time, even on a power2 machine.

If you don't know what your CPU is, execute a uname -m command. It produces a string that looks like 000514676700, with a
format of xxyyyyyymmss where xx and ss are always 00, yyyyyy is a unique system ID and mm is the ID of the CPU Planar.
A chart of these values can be found at http://www16.boulder.ibm.com/pseries/en_US/cmds/aixcmds5/uname.htm.

This gives you a machine type and a machine model you can use to determine what type of CPU you have.

If you have problems with signals (MySQL dies unexpectedly under high load), you may have found an OS bug with threads and
signals. In this case, you can tell MySQL not to use signals by configuring as follows:

CFLAGS=-DDONT_USE_THR_ALARM CXX=gcc \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti \
-DDONT_USE_THR_ALARM" \
./configure --prefix=/usr/local/mysql --with-debug \

--with-low-memory

This doesn't affect the performance of MySQL, but has the side effect that you can't kill clients that are “sleeping” on a connection
with mysqladmin kill or mysqladmin shutdown. Instead, the client dies when it issues its next command.

On some versions of AIX, linking with libbind.a makes getservbyname() dump core. This is an AIX bug and should be
reported to IBM.

For AIX 4.2.1 and gcc, you have to make the following changes.

After configuring, edit config.h and include/my_config.h and change the line that says this:

#define HAVE_SNPRINTF 1

to this:

#undef HAVE_SNPRINTF

And finally, in mysqld.cc, you need to add a prototype for initgroups().

#ifdef _AIX41
extern "C" int initgroups(const char *,int);
#endif

For 32-bit binaries, if you need to allocate a lot of memory to the mysqld process, it is not enough to just use ulimit -d un-
limited. You may also have to modify mysqld_safe to add a line something like this:

export LDR_CNTRL='MAXDATA=0x80000000'

You can find more information about using a lot of memory at ht-
tp://publib16.boulder.ibm.com/pseries/en_US/aixprggd/genprogc/lrg_prg_support.htm.

Users of AIX 4.3 should use gmake instead of the make utility included with AIX.

As of AIX 4.1, the C compiler has been unbundled from AIX as a separate product. We recommend using gcc 3.3.2, which can be
obtained here: ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/RPMS/ppc/gcc/

The steps for compiling MySQL on AIX with gcc 3.3.2 are similar to those for using gcc 2.95 (in particular, the need to edit
config.h and my_config.h after running configure). However, before running configure, you should also patch the
curses.h file as follows:

/opt/freeware/lib/gcc-lib/powerpc-ibm-aix5.2.0.0/3.3.2/include/curses.h.ORIG
Mon Dec 26 02:17:28 2005

Operating System-Specific Notes

106

http://www16.boulder.ibm.com/pseries/en_US/cmds/aixcmds5/uname.htm
http://publib16.boulder.ibm.com/pseries/en_US/aixprggd/genprogc/lrg_prg_support.htm
http://publib16.boulder.ibm.com/pseries/en_US/aixprggd/genprogc/lrg_prg_support.htm
ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/RPMS/ppc/gcc/

--- /opt/freeware/lib/gcc-lib/powerpc-ibm-aix5.2.0.0/3.3.2/include/curses.h
Mon Dec 26 02:40:13 2005

*** 2023,2029 ****
#endif /* _AIX32_CURSES */

! #if defined(__USE_FIXED_PROTOTYPES__) || defined(__cplusplus) || defined
(__STRICT_ANSI__)
extern int delwin (WINDOW *);
extern int endwin (void);
extern int getcurx (WINDOW *);

--- 2023,2029 ----
#endif /* _AIX32_CURSES */

! #if 0 && (defined(__USE_FIXED_PROTOTYPES__) || defined(__cplusplus)
|| defined
(__STRICT_ANSI__))
extern int delwin (WINDOW *);
extern int endwin (void);
extern int getcurx (WINDOW *);

13.5.4. SunOS 4 Notes
On SunOS 4, MIT-pthreads is needed to compile MySQL. This in turn means you need GNU make.

Some SunOS 4 systems have problems with dynamic libraries and libtool. You can use the following configure line to
avoid this problem:

./configure --disable-shared --with-mysqld-ldflags=-all-static

When compiling readline, you may get warnings about duplicate defines. These can be ignored.

When compiling mysqld, there are some implicit declaration of function warnings. These can be ignored.

13.5.5. Alpha-DEC-UNIX Notes (Tru64)
If you are using egcs 1.1.2 on Digital Unix, you should upgrade to gcc 2.95.2, because egcs on DEC has some serious bugs!

When compiling threaded programs under Digital Unix, the documentation recommends using the -pthread option for cc and
cxx and the -lmach -lexc libraries (in addition to -lpthread). You should run configure something like this:

CC="cc -pthread" CXX="cxx -pthread -O" \
./configure --with-named-thread-libs="-lpthread -lmach -lexc -lc"

When compiling mysqld, you may see a couple of warnings like this:

mysqld.cc: In function void handle_connections()':
mysqld.cc:626: passing long unsigned int *' as argument 3 of
accept(int,sockadddr *, int *)'

You can safely ignore these warnings. They occur because configure can detect only errors, not warnings.

If you start the server directly from the command line, you may have problems with it dying when you log out. (When you log out,
your outstanding processes receive a SIGHUP signal.) If so, try starting the server like this:

nohup mysqld [options] &

nohup causes the command following it to ignore any SIGHUP signal sent from the terminal. Alternatively, start the server by
running mysqld_safe, which invokes mysqld using nohup for you. See mysqld_safe.

If you get a problem when compiling mysys/get_opt.c, just remove the #define _NO_PROTO line from the start of that
file.

If you are using Compaq's CC compiler, the following configure line should work:

CC="cc -pthread"
CFLAGS="-O4 -ansi_alias -ansi_args -fast -inline speed \

-speculate all -arch host"
CXX="cxx -pthread"
CXXFLAGS="-O4 -ansi_alias -ansi_args -fast -inline speed \

-speculate all -arch host -noexceptions -nortti"
export CC CFLAGS CXX CXXFLAGS
./configure \

--prefix=/usr/local/mysql \
--with-low-memory \
--enable-large-files \
--enable-shared=yes \
--with-named-thread-libs="-lpthread -lmach -lexc -lc"

gnumake

Operating System-Specific Notes

107

http://dev.mysql.com/doc/refman/6.0/en/mysqld-safe.html

If you get a problem with libtool when compiling with shared libraries as just shown, when linking mysql, you should be able
to get around this by issuing these commands:

cd mysql
/bin/sh ../libtool --mode=link cxx -pthread -O3 -DDBUG_OFF \

-O4 -ansi_alias -ansi_args -fast -inline speed \
-speculate all \ -arch host -DUNDEF_HAVE_GETHOSTBYNAME_R \
-o mysql mysql.o readline.o sql_string.o completion_hash.o \
../readline/libreadline.a -lcurses \
../libmysql/.libs/libmysqlclient.so -lm

cd ..
gnumake
gnumake install
scripts/mysql_install_db

13.5.6. Alpha-DEC-OSF/1 Notes
If you have problems compiling and have DEC CC and gcc installed, try running configure like this:

CC=cc CFLAGS=-O CXX=gcc CXXFLAGS=-O3 \
./configure --prefix=/usr/local/mysql

If you get problems with the c_asm.h file, you can create and use a 'dummy' c_asm.h file with:

touch include/c_asm.h
CC=gcc CFLAGS=-I./include \
CXX=gcc CXXFLAGS=-O3 \
./configure --prefix=/usr/local/mysql

Note that the following problems with the ld program can be fixed by downloading the latest DEC (Compaq) patch kit from: ht-
tp://ftp.support.compaq.com/public/unix/.

On OSF/1 V4.0D and compiler "DEC C V5.6-071 on Digital Unix V4.0 (Rev. 878)," the compiler had some strange behavior
(undefined asm symbols). /bin/ld also appears to be broken (problems with _exit undefined errors occurring while link-
ing mysqld). On this system, we have managed to compile MySQL with the following configure line, after replacing /
bin/ld with the version from OSF 4.0C:

CC=gcc CXX=gcc CXXFLAGS=-O3 ./configure --prefix=/usr/local/mysql

With the Digital compiler "C++ V6.1-029," the following should work:

CC=cc -pthread
CFLAGS=-O4 -ansi_alias -ansi_args -fast -inline speed \

-speculate all -arch host
CXX=cxx -pthread
CXXFLAGS=-O4 -ansi_alias -ansi_args -fast -inline speed \

-speculate all -arch host -noexceptions -nortti
export CC CFLAGS CXX CXXFLAGS
./configure --prefix=/usr/mysql/mysql \

--with-mysqld-ldflags=-all-static --disable-shared \
--with-named-thread-libs="-lmach -lexc -lc"

In some versions of OSF/1, the alloca() function is broken. Fix this by removing the line in config.h that defines
'HAVE_ALLOCA'.

The alloca() function also may have an incorrect prototype in /usr/include/alloca.h. This warning resulting from this
can be ignored.

configure uses the following thread libraries automatically: --with-named-thread-libs="-lpthread -lmach -
lexc -lc".

When using gcc, you can also try running configure like this:

CFLAGS=-D_PTHREAD_USE_D4 CXX=gcc CXXFLAGS=-O3 ./configure ...

If you have problems with signals (MySQL dies unexpectedly under high load), you may have found an OS bug with threads and
signals. In this case, you can tell MySQL not to use signals by configuring with:

CFLAGS=-DDONT_USE_THR_ALARM \
CXXFLAGS=-DDONT_USE_THR_ALARM \
./configure ...

Operating System-Specific Notes

108

http://ftp.support.compaq.com/public/unix/
http://ftp.support.compaq.com/public/unix/

This does not affect the performance of MySQL, but has the side effect that you can't kill clients that are “sleeping” on a connec-
tion with mysqladmin kill or mysqladmin shutdown. Instead, the client dies when it issues its next command.

With gcc 2.95.2, you may encounter the following compile error:

sql_acl.cc:1456: Internal compiler error in `scan_region',
at except.c:2566
Please submit a full bug report.

To fix this, you should change to the sql directory and do a cut-and-paste of the last gcc line, but change -O3 to -O0 (or add -
O0 immediately after gcc if you don't have any -O option on your compile line). After this is done, you can just change back to
the top-level directory and run make again.

13.5.7. SGI Irix Notes
As of MySQL 5.0, we don't provide binaries for Irix any more.

If you are using Irix 6.5.3 or newer, mysqld is able to create threads only if you run it as a user that has CAP_SCHED_MGT priv-
ileges (such as root) or give the mysqld server this privilege with the following shell command:

chcap "CAP_SCHED_MGT+epi" /opt/mysql/libexec/mysqld

You may have to undefine some symbols in config.h after running configure and before compiling.

In some Irix implementations, the alloca() function is broken. If the mysqld server dies on some SELECT statements, remove
the lines from config.h that define HAVE_ALLOC and HAVE_ALLOCA_H. If mysqladmin create doesn't work, remove
the line from config.h that defines HAVE_READDIR_R. You may have to remove the HAVE_TERM_H line as well.

SGI recommends that you install all the patches on this page as a set: ht-
tp://support.sgi.com/surfzone/patches/patchset/6.2_indigo.rps.html

At the very minimum, you should install the latest kernel rollup, the latest rld rollup, and the latest libc rollup.

You definitely need all the POSIX patches on this page, for pthreads support:

http://support.sgi.com/surfzone/patches/patchset/6.2_posix.rps.html

If you get the something like the following error when compiling mysql.cc:

"/usr/include/curses.h", line 82: error(1084):
invalid combination of type

Type the following in the top-level directory of your MySQL source tree:

extra/replace bool curses_bool < /usr/include/curses.h > include/curses.h
make

There have also been reports of scheduling problems. If only one thread is running, performance is slow. Avoid this by starting an-
other client. This may lead to a two-to-tenfold increase in execution speed thereafter for the other thread. This is a poorly under-
stood problem with Irix threads; you may have to improvise to find solutions until this can be fixed.

If you are compiling with gcc, you can use the following configure command:

CC=gcc CXX=gcc CXXFLAGS=-O3 \
./configure --prefix=/usr/local/mysql --enable-thread-safe-client \

--with-named-thread-libs=-lpthread

On Irix 6.5.11 with native Irix C and C++ compilers ver. 7.3.1.2, the following is reported to work

CC=cc CXX=CC CFLAGS='-O3 -n32 -TARG:platform=IP22 -I/usr/local/include \
-L/usr/local/lib' CXXFLAGS='-O3 -n32 -TARG:platform=IP22 \
-I/usr/local/include -L/usr/local/lib' \
./configure --prefix=/usr/local/mysql --with-innodb \

--with-libwrap=/usr/local \
--with-named-curses-libs=/usr/local/lib/libncurses.a

13.5.8. SCO UNIX and OpenServer 5.0.x Notes
The current port is tested only on sco3.2v5.0.5, sco3.2v5.0.6, and sco3.2v5.0.7 systems. There has also been pro-
gress on a port to sco3.2v4.2. Open Server 5.0.8 (Legend) has native threads and allows files greater than 2GB. The current

Operating System-Specific Notes

109

http://dev.mysql.com/doc/refman/6.0/en/select.html
http://support.sgi.com/surfzone/patches/patchset/6.2_indigo.rps.html
http://support.sgi.com/surfzone/patches/patchset/6.2_indigo.rps.html
http://support.sgi.com/surfzone/patches/patchset/6.2_posix.rps.html

maximum file size is 2GB.

We have been able to compile MySQL with the following configure command on OpenServer with gcc 2.95.3.

CC=gcc CFLAGS="-D_FILE_OFFSET_BITS=64 -O3" \
CXX=gcc CXXFLAGS="-D_FILE_OFFSET_BITS=64 -O3" \
./configure --prefix=/usr/local/mysql \

--enable-thread-safe-client --with-innodb \
--with-openssl --with-vio --with-extra-charsets=complex

gcc is available at ftp://ftp.sco.com/pub/openserver5/opensrc/gnutools-5.0.7Kj.

This development system requires the OpenServer Execution Environment Supplement oss646B on OpenServer 5.0.6 and oss656B
and The OpenSource libraries found in gwxlibs. All OpenSource tools are in the opensrc directory. They are available at
ftp://ftp.sco.com/pub/openserver5/opensrc/.

We recommend using the latest production release of MySQL.

SCO provides operating system patches at ftp://ftp.sco.com/pub/openserver5 for OpenServer 5.0.[0-6] and
ftp://ftp.sco.com/pub/openserverv5/507 for OpenServer 5.0.7.

SCO provides information about security fixes at ftp://ftp.sco.com/pub/security/OpenServer for OpenServer 5.0.x.

The maximum file size on an OpenServer 5.0.x system is 2GB.

The total memory which can be allocated for streams buffers, clists, and lock records cannot exceed 60MB on OpenServer 5.0.x.

Streams buffers are allocated in units of 4096 byte pages, clists are 70 bytes each, and lock records are 64 bytes each, so:

(NSTRPAGES × 4096) + (NCLIST × 70) + (MAX_FLCKREC × 64) <= 62914560

Follow this procedure to configure the Database Services option. If you are unsure whether an application requires this, see the
documentation provided with the application.

1. Log in as root.

2. Enable the SUDS driver by editing the /etc/conf/sdevice.d/suds file. Change the N in the second field to a Y.

3. Use mkdev aio or the Hardware/Kernel Manager to enable support for asynchronous I/O and relink the kernel. To allow
users to lock down memory for use with this type of I/O, update the aiomemlock(F) file. This file should be updated to include
the names of users that can use AIO and the maximum amounts of memory they can lock down.

4. Many applications use setuid binaries so that you need to specify only a single user. See the documentation provided with the
application to determine whether this is the case for your application.

After you complete this process, reboot the system to create a new kernel incorporating these changes.

By default, the entries in /etc/conf/cf.d/mtune are set as follows:

Value Default Min Max
----- ------- --- ---
NBUF 0 24 450000
NHBUF 0 32 524288
NMPBUF 0 12 512
MAX_INODE 0 100 64000
MAX_FILE 0 100 64000
CTBUFSIZE 128 0 256
MAX_PROC 0 50 16000
MAX_REGION 0 500 160000
NCLIST 170 120 16640
MAXUP 100 15 16000
NOFILES 110 60 11000
NHINODE 128 64 8192
NAUTOUP 10 0 60
NGROUPS 8 0 128
BDFLUSHR 30 1 300
MAX_FLCKREC 0 50 16000
PUTBUFSZ 8000 2000 20000
MAXSLICE 100 25 100
ULIMIT 4194303 2048 4194303
* Streams Parameters
NSTREAM 64 1 32768
NSTRPUSH 9 9 9
NMUXLINK 192 1 4096
STRMSGSZ 16384 4096 524288
STRCTLSZ 1024 1024 1024
STRMAXBLK 524288 4096 524288
NSTRPAGES 500 0 8000
STRSPLITFRAC 80 50 100

Operating System-Specific Notes

110

ftp://ftp.sco.com/pub/openserver5/opensrc/gnutools-5.0.7Kj
ftp://ftp.sco.com/pub/openserver5/opensrc/
ftp://ftp.sco.com/pub/openserver5
ftp://ftp.sco.com/pub/openserverv5/507
ftp://ftp.sco.com/pub/security/OpenServer

NLOG 3 3 3
NUMSP 64 1 256
NUMTIM 16 1 8192
NUMTRW 16 1 8192
* Semaphore Parameters
SEMMAP 10 10 8192
SEMMNI 10 10 8192
SEMMNS 60 60 8192
SEMMNU 30 10 8192
SEMMSL 25 25 150
SEMOPM 10 10 1024
SEMUME 10 10 25
SEMVMX 32767 32767 32767
SEMAEM 16384 16384 16384
* Shared Memory Parameters
SHMMAX 524288 131072 2147483647
SHMMIN 1 1 1
SHMMNI 100 100 2000
FILE 0 100 64000
NMOUNT 0 4 256
NPROC 0 50 16000
NREGION 0 500 160000

We recommend setting these values as follows:

• NOFILES should be 4096 or 2048.

• MAXUP should be 2048.

To make changes to the kernel, use the idtune name parameter command. idtune modifies the /
etc/conf/cf.d/stune file for you. For example, to change SEMMS to 200, execute this command as root:

/etc/conf/bin/idtune SEMMNS 200

Then rebuild and reboot the kernel by issuing this command:

/etc/conf/bin/idbuild -B && init 6

We recommend tuning the system, but the proper parameter values to use depend on the number of users accessing the application
or database and size the of the database (that is, the used buffer pool). The following kernel parameters can be set with idtune:

• SHMMAX (recommended setting: 128MB) and SHMSEG (recommended setting: 15). These parameters have an influence on the
MySQL database engine to create user buffer pools.

• NOFILES and MAXUP should be set to at least 2048.

• MAXPROC should be set to at least 3000/4000 (depends on number of users) or more.

• We also recommend using the following formulas to calculate values for SEMMSL, SEMMNS, and SEMMNU:

SEMMSL = 13

13 is what has been found to be the best for both Progress and MySQL.

SEMMNS = SEMMSL × number of db servers to be run on the system

Set SEMMNS to the value of SEMMSL multiplied by the number of database servers (maximum) that you are running on the sys-
tem at one time.

SEMMNU = SEMMNS

Set the value of SEMMNU to equal the value of SEMMNS. You could probably set this to 75% of SEMMNS, but this is a conser-
vative estimate.

You need to at least install the SCO OpenServer Linker and Application Development Libraries or the OpenServer Development
System to use gcc. You cannot use the GCC Dev system without installing one of these.

You should get the FSU Pthreads package and install it first. This can be found at ht-
tp://moss.csc.ncsu.edu/~mueller/ftp/pub/PART/pthreads.tar.gz. You can also get a precompiled package from
ftp://ftp.zenez.com/pub/zenez/prgms/FSU-threads-3.14.tar.gz.

Operating System-Specific Notes

111

http://moss.csc.ncsu.edu/~mueller/ftp/pub/PART/pthreads.tar.gz
http://moss.csc.ncsu.edu/~mueller/ftp/pub/PART/pthreads.tar.gz
ftp://ftp.zenez.com/pub/zenez/prgms/FSU-threads-3.14.tar.gz

FSU Pthreads can be compiled with SCO Unix 4.2 with tcpip, or using OpenServer 3.0 or Open Desktop 3.0 (OS 3.0 ODT 3.0)
with the SCO Development System installed using a good port of GCC 2.5.x. For ODT or OS 3.0, you need a good port of GCC
2.5.x. There are a lot of problems without a good port. The port for this product requires the SCO Unix Development system.
Without it, you are missing the libraries and the linker that is needed. You also need SCO-3.2v4.2-includes.tar.gz. This
file contains the changes to the SCO Development include files that are needed to get MySQL to build. You need to replace the ex-
isting system include files with these modified header files. They can be obtained from
ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz.

To build FSU Pthreads on your system, all you should need to do is run GNU make. The Makefile in FSU-threads-3.14.tar.gz is
set up to make FSU-threads.

You can run ./configure in the threads/src directory and select the SCO OpenServer option. This command copies
Makefile.SCO5 to Makefile. Then run make.

To install in the default /usr/include directory, log in as root, and then cd to the thread/src directory and run make
install.

Remember that you must use GNU make to build MySQL.

Note

If you don't start mysqld_safe as root, you should get only the default 110 open files per process. mysqld
writes a note about this in the log file.

With SCO 3.2V4.2, you should use FSU Pthreads version 3.14 or newer. The following configure command should work:

CFLAGS="-D_XOPEN_XPG4" CXX=gcc CXXFLAGS="-D_XOPEN_XPG4" \
./configure \

--prefix=/usr/local/mysql \
--with-named-thread-libs="-lgthreads -lsocket -lgen -lgthreads" \
--with-named-curses-libs="-lcurses"

You may have problems with some include files. In this case, you can find new SCO-specific include files at
ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz.

You should unpack this file in the include directory of your MySQL source tree.

SCO development notes:

• MySQL should automatically detect FSU Pthreads and link mysqld with -lgthreads -lsocket -lgthreads.

• The SCO development libraries are re-entrant in FSU Pthreads. SCO claims that its library functions are re-entrant, so they
must be re-entrant with FSU Pthreads. FSU Pthreads on OpenServer tries to use the SCO scheme to make re-entrant libraries.

• FSU Pthreads (at least the version at ftp://ftp.zenez.com) comes linked with GNU malloc. If you encounter problems with
memory usage, make sure that gmalloc.o is included in libgthreads.a and libgthreads.so.

• In FSU Pthreads, the following system calls are pthreads-aware: read(), write(), getmsg(), connect(), ac-
cept(), select(), and wait().

• The CSSA-2001-SCO.35.2 (the patch is listed in custom as erg711905-dscr_remap security patch (version 2.0.0)) breaks FSU
threads and makes mysqld unstable. You have to remove this one if you want to run mysqld on an OpenServer 5.0.6 ma-
chine.

• If you use SCO OpenServer 5, you may need to recompile FSU pthreads with -DDRAFT7 in CFLAGS. Otherwise, InnoDB
may hang at a mysqld startup.

• SCO provides operating system patches at ftp://ftp.sco.com/pub/openserver5 for OpenServer 5.0.x.

• SCO provides security fixes and libsocket.so.2 at ftp://ftp.sco.com/pub/security/OpenServer and
ftp://ftp.sco.com/pub/security/sse for OpenServer 5.0.x.

• Pre-OSR506 security fixes. Also, the telnetd fix at ftp://stage.caldera.com/pub/security/openserver/ or
ftp://stage.caldera.com/pub/security/openserver/CSSA-2001-SCO.10/ as both libsocket.so.2 and libresolv.so.1
with instructions for installing on pre-OSR506 systems.

It is probably a good idea to install these patches before trying to compile/use MySQL.

Beginning with Legend/OpenServer 6.0.0, there are native threads and no 2GB file size limit.

Operating System-Specific Notes

112

ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz
ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz
ftp://ftp.zenez.com
ftp://ftp.sco.com/pub/openserver5
ftp://ftp.sco.com/pub/security/OpenServer
ftp://ftp.sco.com/pub/security/sse
ftp://stage.caldera.com/pub/security/openserver/
ftp://stage.caldera.com/pub/security/openserver/CSSA-2001-SCO.10/

13.5.9. SCO OpenServer 6.0.x Notes
OpenServer 6 includes these key improvements:

• Larger file support up to 1 TB

• Multiprocessor support increased from 4 to 32 processors

• Increased memory support up to 64GB

• Extending the power of UnixWare into OpenServer 6

• Dramatic performance improvement

OpenServer 6.0.0 commands are organized as follows:

• /bin is for commands that behave exactly the same as on OpenServer 5.0.x.

• /u95/bin is for commands that have better standards conformance, for example Large File System (LFS) support.

• /udk/bin is for commands that behave the same as on UnixWare 7.1.4. The default is for the LFS support.

The following is a guide to setting PATH on OpenServer 6. If the user wants the traditional OpenServer 5.0.x then PATH should be
/bin first. If the user wants LFS support, the path should be /u95/bin:/bin. If the user wants UnixWare 7 support first, the
path would be /udk/bin:/u95/bin:/bin:.

We recommend using the latest production release of MySQL. Should you choose to use an older release of MySQL on OpenServ-
er 6.0.x, you must use a version of MySQL at least as recent as 3.22.13 to get fixes for some portability and OS problems.

MySQL distribution files with names of the following form are tar archives of media are tar archives of media images suitable for
installation with the SCO Software Manager (/etc/custom) on SCO OpenServer 6:

mysql-PRODUCT-6.0.12-sco-osr6-i686.VOLS.tar

A distribution where PRODUCT is pro-cert is the Commercially licensed MySQL Pro Certified server. A distribution where
PRODUCT is pro-gpl-cert is the MySQL Pro Certified server licensed under the terms of the General Public License (GPL).

Select whichever distribution you wish to install and, after download, extract the tar archive into an empty directory. For ex-
ample:

shell> mkdir /tmp/mysql-pro
shell> cd /tmp/mysql-pro
shell> tar xf /tmp/mysql-pro-cert-6.0.12-sco-osr6-i686.VOLS.tar

Prior to installation, back up your data in accordance with the procedures outlined in Section 12.1, “Upgrading MySQL”.

Remove any previously installed pkgadd version of MySQL:

shell> pkginfo mysql 2>&1 > /dev/null && pkgrm mysql

Install MySQL Pro from media images using the SCO Software Manager:

shell> /etc/custom -p SCO:MySQL -i -z /tmp/mysql-pro

Alternatively, the SCO Software Manager can be displayed graphically by clicking on the Software Manager icon on the
desktop, selecting Software -> Install New, selecting the host, selecting Media Images for the Media Device, and en-
tering /tmp/mysql-pro as the Image Directory.

After installation, run mkdev mysql as the root user to configure your newly installed MySQL Pro Certified server.

Note

The installation procedure for VOLS packages does not create the mysql user and group that the package uses by de-
fault. You should either create the mysql user and group, or else select a different user and group using an option in
mkdev mysql.

If you wish to configure your MySQL Pro server to interface with the Apache Web server via PHP, download and install the PHP

Operating System-Specific Notes

113

update from SCO at ftp://ftp.sco.com/pub/updates/OpenServer/SCOSA-2006.17/.

We have been able to compile MySQL with the following configure command on OpenServer 6.0.x:

CC=cc CFLAGS="-D_FILE_OFFSET_BITS=64 -O3" \
CXX=CC CXXFLAGS="-D_FILE_OFFSET_BITS=64 -O3" \
./configure --prefix=/usr/local/mysql \

--enable-thread-safe-client \
--with-extra-charsets=complex \
--build=i686-unknown-sysv5SCO_SV6.0.0

If you use gcc, you must use gcc 2.95.3 or newer.

CC=gcc CXX=g++/configure ...

SCO provides OpenServer 6 operating system patches at ftp://ftp.sco.com/pub/openserver6.

SCO provides information about security fixes at ftp://ftp.sco.com/pub/security/OpenServer.

By default, the maximum file size on a OpenServer 6.0.0 system is 1TB. Some operating system utilities have a limitation of 2GB.
The maximum possible file size on UnixWare 7 is 1TB with VXFS or HTFS.

OpenServer 6 can be configured for large file support (file sizes greater than 2GB) by tuning the UNIX kernel.

By default, the entries in /etc/conf/cf.d/mtune are set as follows:

Value Default Min Max
----- ------- --- ---
SVMMLIM 0x9000000 0x1000000 0x7FFFFFFF
HVMMLIM 0x9000000 0x1000000 0x7FFFFFFF

To make changes to the kernel, use the idtune name parameter command. idtune modifies the /
etc/conf/cf.d/stune file for you. We recommend setting the kernel values by executing the following commands as root:

/etc/conf/bin/idtune SDATLIM 0x7FFFFFFF
/etc/conf/bin/idtune HDATLIM 0x7FFFFFFF
/etc/conf/bin/idtune SVMMLIM 0x7FFFFFFF
/etc/conf/bin/idtune HVMMLIM 0x7FFFFFFF
/etc/conf/bin/idtune SFNOLIM 2048
/etc/conf/bin/idtune HFNOLIM 2048

Then rebuild and reboot the kernel by issuing this command:

/etc/conf/bin/idbuild -B && init 6

We recommend tuning the system, but the proper parameter values to use depend on the number of users accessing the application
or database and size the of the database (that is, the used buffer pool). The following kernel parameters can be set with idtune:

• SHMMAX (recommended setting: 128MB) and SHMSEG (recommended setting: 15). These parameters have an influence on the
MySQL database engine to create user buffer pools.

• SFNOLIM and HFNOLIM should be at maximum 2048.

• NPROC should be set to at least 3000/4000 (depends on number of users).

• We also recommend using the following formulas to calculate values for SEMMSL, SEMMNS, and SEMMNU:

SEMMSL = 13

13 is what has been found to be the best for both Progress and MySQL.

SEMMNS = SEMMSL × number of db servers to be run on the system

Set SEMMNS to the value of SEMMSL multiplied by the number of database servers (maximum) that you are running on the sys-
tem at one time.

SEMMNU = SEMMNS

Set the value of SEMMNU to equal the value of SEMMNS. You could probably set this to 75% of SEMMNS, but this is a conser-
vative estimate.

Operating System-Specific Notes

114

ftp://ftp.sco.com/pub/updates/OpenServer/SCOSA-2006.17/
ftp://ftp.sco.com/pub/openserver6
ftp://ftp.sco.com/pub/security/OpenServer

13.5.10. SCO UnixWare 7.1.x and OpenUNIX 8.0.0 Notes
We recommend using the latest production release of MySQL. Should you choose to use an older release of MySQL on UnixWare
7.1.x, you must use a version of MySQL at least as recent as 3.22.13 to get fixes for some portability and OS problems.

We have been able to compile MySQL with the following configure command on UnixWare 7.1.x:

CC="cc" CFLAGS="-I/usr/local/include" \
CXX="CC" CXXFLAGS="-I/usr/local/include" \
./configure --prefix=/usr/local/mysql \

--enable-thread-safe-client \
--with-innodb --with-openssl --with-extra-charsets=complex

If you want to use gcc, you must use gcc 2.95.3 or newer.

CC=gcc CXX=g++/configure ...

SCO provides operating system patches at ftp://ftp.sco.com/pub/unixware7 for UnixWare 7.1.1,
ftp://ftp.sco.com/pub/unixware7/713/ for UnixWare 7.1.3, ftp://ftp.sco.com/pub/unixware7/714/ for UnixWare 7.1.4, and
ftp://ftp.sco.com/pub/openunix8 for OpenUNIX 8.0.0.

SCO provides information about security fixes at ftp://ftp.sco.com/pub/security/OpenUNIX for OpenUNIX and
ftp://ftp.sco.com/pub/security/UnixWare for UnixWare.

The UnixWare 7 file size limit is 1 TB with VXFS. Some OS utilities have a limitation of 2GB.

On UnixWare 7.1.4 you do not need to do anything to get large file support, but to enable large file support on prior versions of
UnixWare 7.1.x, run fsadm.

fsadm -Fvxfs -o largefiles /
fsadm / * Note
ulimit unlimited
/etc/conf/bin/idtune SFSZLIM 0x7FFFFFFF ** Note
/etc/conf/bin/idtune HFSZLIM 0x7FFFFFFF ** Note
/etc/conf/bin/idbuild -B
* This should report "largefiles".
** 0x7FFFFFFF represents infinity for these values.

Reboot the system using shutdown.

By default, the entries in /etc/conf/cf.d/mtune are set as follows:

Value Default Min Max
----- ------- --- ---
SVMMLIM 0x9000000 0x1000000 0x7FFFFFFF
HVMMLIM 0x9000000 0x1000000 0x7FFFFFFF

To make changes to the kernel, use the idtune name parameter command. idtune modifies the /
etc/conf/cf.d/stune file for you. We recommend setting the kernel values by executing the following commands as root:

/etc/conf/bin/idtune SDATLIM 0x7FFFFFFF
/etc/conf/bin/idtune HDATLIM 0x7FFFFFFF
/etc/conf/bin/idtune SVMMLIM 0x7FFFFFFF
/etc/conf/bin/idtune HVMMLIM 0x7FFFFFFF
/etc/conf/bin/idtune SFNOLIM 2048
/etc/conf/bin/idtune HFNOLIM 2048

Then rebuild and reboot the kernel by issuing this command:

/etc/conf/bin/idbuild -B && init 6

We recommend tuning the system, but the proper parameter values to use depend on the number of users accessing the application
or database and size the of the database (that is, the used buffer pool). The following kernel parameters can be set with idtune:

• SHMMAX (recommended setting: 128MB) and SHMSEG (recommended setting: 15). These parameters have an influence on the
MySQL database engine to create user buffer pools.

• SFNOLIM and HFNOLIM should be at maximum 2048.

• NPROC should be set to at least 3000/4000 (depends on number of users).

• We also recommend using the following formulas to calculate values for SEMMSL, SEMMNS, and SEMMNU:

Operating System-Specific Notes

115

ftp://ftp.sco.com/pub/unixware7
ftp://ftp.sco.com/pub/unixware7/713/
ftp://ftp.sco.com/pub/unixware7/714/
ftp://ftp.sco.com/pub/openunix8
ftp://ftp.sco.com/pub/security/OpenUNIX
ftp://ftp.sco.com/pub/security/UnixWare

SEMMSL = 13

13 is what has been found to be the best for both Progress and MySQL.

SEMMNS = SEMMSL × number of db servers to be run on the system

Set SEMMNS to the value of SEMMSL multiplied by the number of database servers (maximum) that you are running on the sys-
tem at one time.

SEMMNU = SEMMNS

Set the value of SEMMNU to equal the value of SEMMNS. You could probably set this to 75% of SEMMNS, but this is a conser-
vative estimate.

Operating System-Specific Notes

116

Chapter 14. Environment Variables
This section lists all the environment variables that are used directly or indirectly by MySQL. Most of these can also be found in
other places in this manual.

Note that any options on the command line take precedence over values specified in option files and environment variables, and
values in option files take precedence over values in environment variables.

In many cases, it is preferable to use an option file instead of environment variables to modify the behavior of MySQL. See Using
Option Files.

Variable Description

CXX The name of your C++ compiler (for running configure).

CC The name of your C compiler (for running configure).

CFLAGS Flags for your C compiler (for running configure).

CXXFLAGS Flags for your C++ compiler (for running configure).

DBI_USER The default user name for Perl DBI.

DBI_TRACE Trace options for Perl DBI.

HOME The default path for the mysql history file is $HOME/.mysql_history.

LD_RUN_PATH Used to specify the location of libmysqlclient.so.

MYSQL_DEBUG Debug trace options when debugging.

MYSQL_GROUP_SUFFIX Option group suffix value (like specifying --defaults-group-suffix).

MYSQL_HISTFILE The path to the mysql history file. If this variable is set, its value overrides the default for
$HOME/.mysql_history.

MYSQL_HOME The path to the directory in which the server-specific my.cnf file resides (as of MySQL 5.0.3).

MYSQL_HOST The default host name used by the mysql command-line client.

MYSQL_PS1 The command prompt to use in the mysql command-line client.

MYSQL_PWD The default password when connecting to mysqld. Note that using this is insecure. See End-
User Guidelines for Password Security.

MYSQL_TCP_PORT The default TCP/IP port number.

MYSQL_UNIX_PORT The default Unix socket file name; used for connections to localhost.

PATH Used by the shell to find MySQL programs.

TMPDIR The directory where temporary files are created.

TZ This should be set to your local time zone. See Time Zone Problems.

UMASK The user-file creation mode when creating files. See note following table.

UMASK_DIR The user-directory creation mode when creating directories. See note following table.

USER The default user name on Windows and NetWare used when connecting to mysqld.

The UMASK and UMASK_DIR variables, despite their names, are used as modes, not masks:

• If UMASK is set, mysqld uses ($UMASK | 0600) as the mode for file creation, so that newly created files have a mode in
the range from 0600 to 0666 (all values octal).

• If UMASK_DIR is set, mysqld uses ($UMASK_DIR | 0700) as the base mode for directory creation, which then is AND-
ed with ~(~$UMASK & 0666), so that newly created directories have a mode in the range from 0700 to 0777 (all values
octal). The AND operation may remove read and write permissions from the directory mode, but not execute permissions.

MySQL assumes that the value for UMASK or UMASK_DIR is in octal if it starts with a zero.

117

http://dev.mysql.com/doc/refman/6.0/en/option-files.html
http://dev.mysql.com/doc/refman/6.0/en/option-files.html
http://dev.mysql.com/doc/refman/6.0/en/option-file-options.html#option_general_defaults-group-suffix
http://dev.mysql.com/doc/refman/6.0/en/password-security-user.html
http://dev.mysql.com/doc/refman/6.0/en/password-security-user.html
http://dev.mysql.com/doc/refman/6.0/en/administration-issues.html#timezone-problems

Chapter 15. Perl Installation Notes
Perl support for MySQL is provided by means of the DBI/DBD client interface. The interface requires Perl 5.6.0, and 5.6.1 or later
is preferred. DBI does not work if you have an older version of Perl.

If you want to use transactions with Perl DBI, you need to have DBD::mysql 2.0900. If you are using the MySQL 4.1 or newer
client library, you must use DBD::mysql 2.9003 or newer. Support for server-side prepared statements requires DBD::mysql
3.0009 or newer.

Perl support is not included with MySQL distributions. You can obtain the necessary modules from http://search.cpan.org for Unix,
or by using the ActiveState ppm program on Windows. The following sections describe how to do this.

Perl support for MySQL must be installed if you want to run the MySQL benchmark scripts; see The MySQL Benchmark Suite.

15.1. Installing Perl on Unix
MySQL Perl support requires that you have installed MySQL client programming support (libraries and header files). Most install-
ation methods install the necessary files. However, if you installed MySQL from RPM files on Linux, be sure that you've installed
the developer RPM. The client programs are in the client RPM, but client programming support is in the developer RPM.

If you want to install Perl support, the files you need can be obtained from the CPAN (Comprehensive Perl Archive Network) at ht-
tp://search.cpan.org.

The easiest way to install Perl modules on Unix is to use the CPAN module. For example:

shell> perl -MCPAN -e shell
cpan> install DBI
cpan> install DBD::mysql

The DBD::mysql installation runs a number of tests. These tests attempt to connect to the local MySQL server using the default
user name and password. (The default user name is your login name on Unix, and ODBC on Windows. The default password is “no
password.”) If you cannot connect to the server with those values (for example, if your account has a password), the tests fail. You
can use force install DBD::mysql to ignore the failed tests.

DBI requires the Data::Dumper module. It may be installed; if not, you should install it before installing DBI.

It is also possible to download the module distributions in the form of compressed tar archives and build the modules manually.
For example, to unpack and build a DBI distribution, use a procedure such as this:

1. Unpack the distribution into the current directory:

shell> gunzip < DBI-VERSION.tar.gz | tar xvf -

This command creates a directory named DBI-VERSION.

2. Change location into the top-level directory of the unpacked distribution:

shell> cd DBI-VERSION

3. Build the distribution and compile everything:

shell> perl Makefile.PL
shell> make
shell> make test
shell> make install

The make test command is important because it verifies that the module is working. Note that when you run that command dur-
ing the DBD::mysql installation to exercise the interface code, the MySQL server must be running or the test fails.

It is a good idea to rebuild and reinstall the DBD::mysql distribution whenever you install a new release of MySQL, particularly
if you notice symptoms such as that all your DBI scripts fail after you upgrade MySQL.

If you do not have access rights to install Perl modules in the system directory or if you want to install local Perl modules, the fol-
lowing reference may be useful: http://servers.digitaldaze.com/extensions/perl/modules.html#modules

Look under the heading “Installing New Modules that Require Locally Installed Modules.”

118

http://search.cpan.org
http://dev.mysql.com/doc/refman/6.0/en/mysql-benchmarks.html
http://search.cpan.org
http://search.cpan.org
http://servers.digitaldaze.com/extensions/perl/modules.html#modules

15.2. Installing ActiveState Perl on Windows
On Windows, you should do the following to install the MySQL DBD module with ActiveState Perl:

1. Get ActiveState Perl from http://www.activestate.com/Products/ActivePerl/ and install it.

2. Open a console window (a “DOS window”).

3. If necessary, set the HTTP_proxy variable. For example, you might try a setting like this:

set HTTP_proxy=my.proxy.com:3128

4. Start the PPM program:

C:\> C:\perl\bin\ppm.pl

5. If you have not previously done so, install DBI:

ppm> install DBI

6. If this succeeds, run the following command:

ppm> install DBD-mysql

This procedure should work with ActiveState Perl 5.6 or newer.

If you cannot get the procedure to work, you should install the MyODBC driver instead and connect to the MySQL server through
ODBC:

use DBI;
$dbh= DBI->connect("DBI:ODBC:$dsn",$user,$password) ||
die "Got error $DBI::errstr when connecting to $dsn\n";

15.3. Problems Using the Perl DBI/DBD Interface
If Perl reports that it cannot find the ../mysql/mysql.so module, the problem is probably that Perl cannot locate the
libmysqlclient.so shared library. You should be able to fix this problem by one of the following methods:

• Compile the DBD::mysql distribution with perl Makefile.PL -static -config rather than perl Make-
file.PL.

• Copy libmysqlclient.so to the directory where your other shared libraries are located (probably /usr/lib or /lib).

• Modify the -L options used to compile DBD::mysql to reflect the actual location of libmysqlclient.so.

• On Linux, you can add the path name of the directory where libmysqlclient.so is located to the /etc/ld.so.conf
file.

• Add the path name of the directory where libmysqlclient.so is located to the LD_RUN_PATH environment variable.
Some systems use LD_LIBRARY_PATH instead.

Note that you may also need to modify the -L options if there are other libraries that the linker fails to find. For example, if the
linker cannot find libc because it is in /lib and the link command specifies -L/usr/lib, change the -L option to -L/lib or
add -L/lib to the existing link command.

If you get the following errors from DBD::mysql, you are probably using gcc (or using an old binary compiled with gcc):

/usr/bin/perl: can't resolve symbol '__moddi3'
/usr/bin/perl: can't resolve symbol '__divdi3'

Add -L/usr/lib/gcc-lib/... -lgcc to the link command when the mysql.so library gets built (check the output from
make for mysql.so when you compile the Perl client). The -L option should specify the path name of the directory where
libgcc.a is located on your system.

Another cause of this problem may be that Perl and MySQL are not both compiled with gcc. In this case, you can solve the mis-

Perl Installation Notes

119

http://www.activestate.com/Products/ActivePerl/

match by compiling both with gcc.

You may see the following error from DBD::mysql when you run the tests:

t/00base............install_driver(mysql) failed:
Can't load '../blib/arch/auto/DBD/mysql/mysql.so' for module DBD::mysql:
../blib/arch/auto/DBD/mysql/mysql.so: undefined symbol:
uncompress at /usr/lib/perl5/5.00503/i586-linux/DynaLoader.pm line 169.

This means that you need to include the -lz compression library on the link line. That can be done by changing the following line
in the file lib/DBD/mysql/Install.pm:

$sysliblist .= " -lm";

Change that line to:

$sysliblist .= " -lm -lz";

After this, you must run make realclean and then proceed with the installation from the beginning.

If you want to install DBI on SCO, you have to edit the Makefile in DBI-xxx and each subdirectory. Note that the following as-
sumes gcc 2.95.2 or newer:

OLD: NEW:
CC = cc CC = gcc
CCCDLFLAGS = -KPIC -W1,-Bexport CCCDLFLAGS = -fpic
CCDLFLAGS = -wl,-Bexport CCDLFLAGS =
LD = ld LD = gcc -G -fpic
LDDLFLAGS = -G -L/usr/local/lib LDDLFLAGS = -L/usr/local/lib
LDFLAGS = -belf -L/usr/local/lib LDFLAGS = -L/usr/local/lib
LD = ld LD = gcc -G -fpic
OPTIMISE = -Od OPTIMISE = -O1
OLD:
CCCFLAGS = -belf -dy -w0 -U M_XENIX -DPERL_SCO5 -I/usr/local/include
NEW:
CCFLAGS = -U M_XENIX -DPERL_SCO5 -I/usr/local/include

These changes are necessary because the Perl dynaloader does not load the DBI modules if they were compiled with icc or cc.

If you want to use the Perl module on a system that does not support dynamic linking (such as SCO), you can generate a static ver-
sion of Perl that includes DBI and DBD::mysql. The way this works is that you generate a version of Perl with the DBI code
linked in and install it on top of your current Perl. Then you use that to build a version of Perl that additionally has the DBD code
linked in, and install that.

On SCO, you must have the following environment variables set:

LD_LIBRARY_PATH=/lib:/usr/lib:/usr/local/lib:/usr/progressive/lib

Or:

LD_LIBRARY_PATH=/usr/lib:/lib:/usr/local/lib:/usr/ccs/lib:\
/usr/progressive/lib:/usr/skunk/lib

LIBPATH=/usr/lib:/lib:/usr/local/lib:/usr/ccs/lib:\
/usr/progressive/lib:/usr/skunk/lib

MANPATH=scohelp:/usr/man:/usr/local1/man:/usr/local/man:\
/usr/skunk/man:

First, create a Perl that includes a statically linked DBI module by running these commands in the directory where your DBI distri-
bution is located:

shell> perl Makefile.PL -static -config
shell> make
shell> make install
shell> make perl

Then you must install the new Perl. The output of make perl indicates the exact make command you need to execute to perform
the installation. On SCO, this is make -f Makefile.aperl inst_perl MAP_TARGET=perl.

Next, use the just-created Perl to create another Perl that also includes a statically linked DBD::mysql by running these com-
mands in the directory where your DBD::mysql distribution is located:

shell> perl Makefile.PL -static -config
shell> make
shell> make install
shell> make perl

Perl Installation Notes

120

Finally, you should install this new Perl. Again, the output of make perl indicates the command to use.

Perl Installation Notes

121

	MySQL Installation Guide
	Installing and Upgrading MySQL
	Chapter 1. General Installation Issues
	1.1. Operating Systems Supported by MySQL Community Server
	1.2. Choosing Which MySQL Distribution to Install
	1.2.1. Choosing Which Version of MySQL to Install
	1.2.2. Choosing a Distribution Format
	1.2.3. How and When Updates Are Released
	1.2.4. MySQL Binaries Compiled by Sun Microsystems, Inc.

	1.3. How to Get MySQL
	1.4. Verifying Package Integrity Using MD5 Checksums or GnuPG
	1.4.1. Verifying the MD5 Checksum
	1.4.2. Signature Checking Using GnuPG
	1.4.3. Signature Checking Using RPM

	1.5. Installation Layouts

	Chapter 2. Standard MySQL Installation Using a Binary Distribution
	Chapter 3. Installing MySQL on Windows
	3.1. Choosing An Installation Package
	3.2. Installing MySQL with the Automated Installer
	3.3. Using the MySQL Installation Wizard
	3.3.1. Downloading and Starting the MySQL Installation Wizard
	3.3.2. Choosing an Install Type
	3.3.3. The Custom Install Dialog
	3.3.4. The Confirmation Dialog
	3.3.5. Changes Made by MySQL Installation Wizard
	3.3.6. Upgrading MySQL with the Installation Wizard

	3.4. MySQL Server Instance Configuration Wizard
	3.4.1. Starting the MySQL Server Instance Configuration Wizard
	3.4.2. Choosing a Maintenance Option
	3.4.3. Choosing a Configuration Type
	3.4.4. The Server Type Dialog
	3.4.5. The Database Usage Dialog
	3.4.6. The InnoDB Tablespace Dialog
	3.4.7. The Concurrent Connections Dialog
	3.4.8. The Networking and Strict Mode Options Dialog
	3.4.9. The Character Set Dialog
	3.4.10. The Service Options Dialog
	3.4.11. The Security Options Dialog
	3.4.12. The Confirmation Dialog

	3.5. Installing MySQL from a Noinstall Zip Archive
	3.6. Extracting the Install Archive
	3.7. Creating an Option File
	3.8. Selecting a MySQL Server Type
	3.9. Starting the Server for the First Time
	3.10. Starting MySQL from the Windows Command Line
	3.11. Starting MySQL as a Windows Service
	3.12. Testing The MySQL Installation
	3.13. Troubleshooting a MySQL Installation Under Windows
	3.14. Upgrading MySQL on Windows
	3.15. MySQL on Windows Compared to MySQL on Unix

	Chapter 4. Installing MySQL from RPM Packages on Linux
	Chapter 5. Installing MySQL on Mac OS X
	Chapter 6. Installing MySQL on Solaris
	Chapter 7. Installing MySQL on i5/OS
	Chapter 8. Installing MySQL on NetWare
	Chapter 9. Installing MySQL from tar.gz Packages on Other Unix-Like Systems
	Chapter 10. MySQL Installation Using a Source Distribution
	10.1. Source Installation Overview
	10.2. Typical configure Options
	10.3. Installing from the Development Source Tree
	10.4. Dealing with Problems Compiling MySQL
	10.5. MIT-pthreads Notes
	10.6. Installing MySQL from Source on Windows
	10.6.1. Building MySQL from Source Using CMake and Visual Studio

	10.7. Compiling MySQL Clients on Windows

	Chapter 11. Post-Installation Setup and Testing
	11.1. Windows Post-Installation Procedures
	11.2. Unix Post-Installation Procedures
	11.2.1. Problems Running mysql_install_db
	11.2.2. Starting and Stopping MySQL Automatically
	11.2.3. Starting and Troubleshooting the MySQL Server

	11.3. Securing the Initial MySQL Accounts

	Chapter 12. Upgrading or Downgrading MySQL
	12.1. Upgrading MySQL
	12.1.1. Upgrading from MySQL 5.1 to 6.0

	12.2. Downgrading MySQL
	12.2.1. Downgrading to MySQL 5.0

	12.3. Checking Whether Table Indexes Must Be Rebuilt
	12.4. Rebuilding or Repairing Tables or Indexes
	12.5. Copying MySQL Databases to Another Machine

	Chapter 13. Operating System-Specific Notes
	13.1. Linux Notes
	13.1.1. Linux Operating System Notes
	13.1.2. Linux Binary Distribution Notes
	13.1.3. Linux Source Distribution Notes
	13.1.4. Linux Post-Installation Notes
	13.1.5. Linux x86 Notes
	13.1.6. Linux SPARC Notes
	13.1.7. Linux Alpha Notes
	13.1.8. Linux PowerPC Notes
	13.1.9. Linux MIPS Notes
	13.1.10. Linux IA-64 Notes
	13.1.11. SELinux Notes

	13.2. Mac OS X Notes
	13.2.1. Mac OS X 10.x (Darwin)
	13.2.2. Mac OS X Server 1.2 (Rhapsody)

	13.3. Solaris Notes
	13.3.1. Solaris 2.7/2.8 Notes
	13.3.2. Solaris x86 Notes

	13.4. BSD Notes
	13.4.1. FreeBSD Notes
	13.4.2. NetBSD Notes
	13.4.3. OpenBSD 2.5 Notes
	13.4.4. BSD/OS Version 2.x Notes
	13.4.5. BSD/OS Version 3.x Notes
	13.4.6. BSD/OS Version 4.x Notes

	13.5. Other Unix Notes
	13.5.1. HP-UX Version 10.20 Notes
	13.5.2. HP-UX Version 11.x Notes
	13.5.3. IBM-AIX notes
	13.5.4. SunOS 4 Notes
	13.5.5. Alpha-DEC-UNIX Notes (Tru64)
	13.5.6. Alpha-DEC-OSF/1 Notes
	13.5.7. SGI Irix Notes
	13.5.8. SCO UNIX and OpenServer 5.0.x Notes
	13.5.9. SCO OpenServer 6.0.x Notes
	13.5.10. SCO UnixWare 7.1.x and OpenUNIX 8.0.0 Notes

	Chapter 14. Environment Variables
	Chapter 15. Perl Installation Notes
	15.1. Installing Perl on Unix
	15.2. Installing ActiveState Perl on Windows
	15.3. Problems Using the Perl DBI/DBD Interface

